Satisfiability Checking: Theory and Applications

Erika Abrahdam and Gereon Kremer

RWTH Aachen University, Germany

Abstract. Satisfiability checking aims to develop algorithms and tools
for checking the satisfiability of existentially quantified logical formulas.
Besides powerful SAT solvers for solving propositional logic formulas, so-
phisticated SAT-modulo-theories (SMT) solvers are available for a wide
range of theories, and are applied as black-box engines for many tech-
niques in different areas. In this paper we give a short introduction to
the theoretical foundations of satisfiability checking, mention some of the
most popular tools, and discuss the successful embedding of SMT solvers
in different technologies.

1 Introduction

First-order-logic is a powerful modelling formalism frequently used to specify
problems in different areas like verification, termination analysis, test case gen-
eration, controller synthesis, equivalence checking, combinatorial tasks, schedul-
ing, planning, and product design automation and optimisation, just to mention
a few well-known examples. Once the problem is formalised, algorithms and their
implementations are needed to check the validity or satisfiability of the formulas,
and in case they are satisfiable, to identify satisfying solutions. Algorithms to
solve this problem are called decision procedures.

In mathematical logic, in the early 20th century some novel decision pro-
cedures were developed for arithmetic theories. With the advent of computer
systems, big efforts were made to provide automated solutions in form of prac-
tically feasible implementations of decision procedures. In the area of symbolic
computation, this development led to computer algebra systems supporting all
kinds of scientific computations. Another line of research, satisfiability checking
[10], started to focus on the more specific aim of checking the satisfiability of
existentially quantified logical formulas.

For Boolean propositional logic, which is known to be NP-complete, in the
late ’90s impressive progress was made in the area of satisfiability checking,
resulting in powerful SAT solvers. The first idea used resolution for quantifier
elimination [30], but it had serious problems with the explosion of the mem-
ory requirements with increasing problem size. A combination of enumeration
and Boolean constraint propagation [29] brought important enhancements. An-
other major improvement was achieved by a novel combination of enumera-
tion, Boolean constraint propagation and resolution, leading to conflict-driven
clause-learning and non-chronological backtracking [50]. Later on, this impres-
sive progress was continued by novel efficient implementation techniques (e.g.,

sophisticated decision heuristics, two-watched-literal scheme, restarts, cache per-
formance, etc.). Also different extensions are available, for example QBF solvers
for quantified Boolean formulas, Max-SAT solvers to find solutions which satisfy
a maximal number of clauses, or #SAT solvers to find all satisfying solutions
of a propositional logic formula. State-of-the-art SAT solvers are able to solve
such impressively large propositional logic problems that they became not only
applicable in industry, but one of the most important engines in, e.g., hardware
verification.

Driven by this success, the satisfiability checking community started to en-
rich propositional SAT solvers with solver modules for different theories. Nowa-
days, sophisticated SAT-modulo-theories (SMT) solvers are available for a wide
range of theories like equalities and uninterpreted functions, bit-vector arith-
metic, floating-point arithmetic, array theory, difference logic, (quantifier-free)
linear real/integer /mixed arithmetic, and (quantifier-free) non-linear real/integ-
er/mixed arithmetic. Latest research led also to functional extensions, going
beyond satisfiability checking for existentially quantified formulas towards pro-
viding an unsatisfiable core for unsatisfiable input problems, proof of unsatis-
fiability, solving quantified formulas, and solving optimisation problems. Some
solvers also exploit parallelisation to make use of multi-core hardware architec-
tures.

The strength of SMT solvers is that they offer fully automated push-button
solutions. Thanks to efficient data structures and elaborate search heuristics,
their increasing efficiency is coupled with increasing popularity and success in
applications. An important enabling factor to applications was the introduction
of a standard input language SMT-LIB [8] with a first release in 2004, which allows
users to specify their problems in the standard language and to feed it to different
solvers to find the optimal tool for a given purpose.

The standard also enabled the collection of reference benchmark sets and
the start of annual competitions [7]. The first competition took place in 2005
with 12 participating solvers in 7 divisions (theories, theory combinations, or
fragments thereof) on 1360 benchmarks, which increased in 2015 to 21 solvers
competing in 40 divisions on 154238 benchmarks in the main track. All these
activities contributed to the consolidation of an SMT solving community and
to the visibility of the SMT-solving technologies. Nowadays, SMT solvers are
widely used and are key components of many techniques in different academic
and industrial areas.

In the following we give a short introduction to the theoretical foundations of
satisfiability checking in Section 2, give a nutshell-overview about state-of-the-
art SMT solvers including our own SMT solver SMT-RAT in Section 3, and discuss
the efficient embedding of SMT solvers in different technologies in Section 4. We
conclude the paper in Section 5. For further reading on SMT solving we refer
to, e.g., [9] and [46].

SMT-LIB |E le th traint

Quantifier-free theory rample theory constraints
name
equality and uninterpreted functions QF _UF a= f(b,g(a,c)
theory of (fixed-size) bit-vectors QF_BV (alb) < (a&d)
theory of arrays with extensionality QF_AX | select(store(a,i,v),i) =v
floating point arithmetic QF_FP z2 =x1 + 5(x1 — Y1)
real difference logic QF _RDL
- - - z—y>0
integer difference logic QF_IDL
l%near %"eal arithr.netic . QF_LRA S+ Ty—8<0
linear integer arithmetic QF_LIA
non—l?near .real arithr'netic ' QF_NRA 242 9y 1520
non-linear integer arithmetic QF_NIA
th f bit-vect d bit-vect
COLY 0 1, vee ?rs and bri-vee O? aArrays QF_AUFBV| select(a, bv[32]) < bv[32]

extended with uninterpreted functions
hn.ear real arlthmet?c with QF_UFLRA 2+ 7f(y) —8>0
uninterpreted functions

Fig. 1. Example theory constraints from some logics that are included in the SMT-LIB
standard language. The involved operators are: f,g,h are uninterpreted functions; |
and & are bit-wise or and and, respectively; finally, for arrays write(a, ,v) is the array
a after setting its ith field to v, whereas read(a, j) stays for the jth field of a. For
readability, the examples are not in SMT-LIB syntax, e.g., they use infix notation.

2 Satisfiability Checking

Satisfiability checking aims at automated solutions for determining the satis-
fiability of existentially quantified first-order-logic formulas. Such formulas are
Boolean combinations of theory constraints, where the form of the theory con-
straints depends on with which theory we instantiate first-order logic. For ex-
ample, existentially quantified non-linear real arithmetic formulas can be built
from polynomial equalities and inequalities, and their Boolean combinations.
Some example theory constraints from different theories that are included in
the SMT-LIB standard input language are depicted in Figure 1. Exemplarily, we
mention also two combined theories in the last two rows.

2.1 SAT Solving

Before we discuss SAT-modulo-theories solving for checking the satisfiability of
quantifier-free first-order-logic formulas, we first make a short excursion to SAT
solving. SAT solvers implement decision procedures to check the satisfiability of
propositional logic formulas, being the Boolean combinations of atomic (Boolean)
propositions.

Here we only explain the DPLL-style SAT solving algorithm, which is im-
plemented in most state-of-the-art SAT solver technologies. The input formula

conflict
resolution

all variables yes

SAT

make |no
decision

assigned?

Fig. 2. The DPLL framework

is expected to be in conjunctive normal form (CNF), i.e., the conjunction of
clauses, each clause being the disjunction of literals, and each literal being a
proposition or its negation. Each formula can be transformed into CNF in linear
time and space at the cost of linearly many fresh propositions using Tseitin’s
transformation [67].

The DPLL algorithm has three main ingredients:

1. To explore the state space, the algorithm iteratively makes decisions, i.e., it
iteratively assigns truth values to some heuristically chosen propositions.

2. After each such decision, the algorithm applies Boolean constraint propaga-
tion (BCP) to determine further variable assignments that are implied by
the last decision.

3. If BCP leads to a conflict, i.e., if the value of a proposition is implied to
be true as well as false at the same time, conflict-driven clause-learning and
non-chronological backtracking [50] are applied: The algorithm follows back
the chain of implications and applies resolution [30] to derive a reason for
the conflict in form of a conflict clause, which is added to the solver’s clause
set. Backtracking removes previous decisions and their implications until the
conflict clause can be satisfied.

If the input has clauses consisting of a single literal, these literals will be directly
assigned. Therefore, the algorithm starts with BCP, as show in Figure 2, to
detect implications. If BCP leads to a conflict, the algorithm tries to resolve
the conflict. If the conflict cannot be resolved, the input formula is unsatisfiable.
Otherwise, if the conflict was successfully resolved, the algorithm backtracks and
continues with BCP. If BCP could be completed without any conflicts, a new
decision will be made if there are any unassigned propositions. Otherwise, a
satisfying solution is found.

Ezample 1. Assume as input the CNF (a) A (ma Vb)) A (cVd)A(=bV eV —d).
First a is set to true. BCP implies by the second clause that b must be true in
order to complete the current partial assignment to a full satisfying solution. As
no conflict appeared and there are still unassigned variables, a new decision will

be made. Assume that this decision assigns false to c¢. BCP will assign true
to d based on the third clause, however, now the fourth clause is conflicting.
Resolution applied to the last two clauses will result in the conflict clause (—bV¢),
which is added to the clause set. Backtracking removes the last decision, and BCP
implies that ¢ must be true. As all variables are assigned, a complete solution
if found and the algorithm returns SAT.

The above algorithm is complete for propositional logic. It should be noted
that many further optimisations were proposed, which led to major improve-
ments, but cannot be discussed here.

2.2 SMT Solving

To check the satisfiability of quantifier-free first-order-logic formulas with an un-
derlying theory (or combined theories [54]), SAT-modulo-theories (SMT) solvers
can be applied. Eager SMT solving approaches translate the input formula to
a satisfiability-equivalent propositional logic formula, whose satisfiability can be
decided using a SAT solver. In the following we focus on lazy SMT-solving ap-
proaches.

Lazy SMT solvers combine a SAT solver with one or more theory solvers.
Thereby the SAT solver handles the input formula’s logical structure and is
responsible for finding solutions for the Boolean skeleton of the input formula,
which is gained by substituting fresh propositions for the theory atoms. To be
able to check the consistency of theory atoms, the SAT solver communicates
with the theory solvers, which implement decision procedures for the underlying
theory.

Figure 3 illustrates the lazy SMT
solving framework. The SAT solver it-

eratively searches for a satisfying so- input
%utlo.ns for the Bgolean skeleton. Dur- CNF formula @
ing its search, it consults the the- :
ory solver(s) to check whether the Boolean abstraction Theory
current Boolean assignment is consis- SAT solver solver(s)
tent in the theory. To do so, it col-
lects all theory constraints whose ab- (SAT+model) or

. e (UNSAT+explanation) or
straction proposition is true and ap- SAT/UNSAT

. UNKNOWN
pears non-negated in the formula, and ()

those whose abstraction proposition is Fig. 3. The SMT solving framework

false and appears negated in the for-

mula. The resulting theory constraint

set is sent to the theory solver(s), which checks whether it is consistent. In the full

lazy approach, this communication takes place only for full Boolean solutions,

whereas in the less lazy approach usually after each conflict-free BCP execution.
If the constraints are consistent in the theory and the SAT solver’s assignment

is already complete then a satisfying solution is found for the input formula. If

the constraints are consistent but the Boolean assignment is not yet complete,

the SAT solver continues its search. Otherwise, if the theory constraints are
conflicting, the invoked theory solver returns an explanation for the conflict. The
explanation is often an infeasible subset {c1,...,c,} of the theory solver’s input
constraints, which leads to a tautology (—c1 V... —c,), whose abstraction can be
added to the SAT solver’s clause set. As the newly added clause is conflicting,
conflict resolution is applied and the SAT solver continues its search in other
parts of the search space.

Ezxample 2. Assume as input the linear real-arithmetic formula
(x—y>10)A(z+y=4Vr=2yVa<y)

with Boolean abstraction
(a)AN(bVevd) .

Assume that the SAT solver’s current assignment is a = true, b = false,
¢ = true and d = true. The constraint set {z —y > 10,z = 2y, < y} is sent
to a theory solver, which reports back inconsistency. A possible explanation is
{z —y > 10,z < y}, whose abstraction (—a V —d) assures that in the further
search either a or d will be set to false.

The above-described approach clearly separates the Boolean search and the-
ory solving. There are also other approaches in which Boolean and theory solving
are more closely integrated.

First SMT solvers addressed more light-weight theories like equality logic and
uninterpreted functions. Aiming at program verification, theories for arrays, bit-
vectors and floating-point arithmetic followed. Nowadays there are also highly
tuned SMT solvers for linear arithmetic theories. Latest developments also allow
solving non-linear arithmetic problems [41, 26], quantified formulas, optimisation
problems [13], and exploit parallelisation [70].

3 SMT Solvers

The aforementioned SMT competitions [7] compare the abilities of participating
SMT solvers on SMT-LIB benchmark sets. The latest results from 2015 [64] give a
good overview of state-of-the-art solvers and their range of applicability. Table 1
shows a rough survey of these solvers for existentially quantified logics. There is
a large number of further SMT solvers, which did not participate in last year’s
competition. Other SMT solvers under active development, which we are aware
of, are Alt-Ergo [25] and iSAT3 [34,62]. Further examples for SMT solvers are
Ario, Barcelogic, Beaver, clasp, DPT, Fx7, haRVey, ICS, LPSAT, MiniSmt, Mistral,
OpenCog, RDL, SatEEn, Simplics, Simplify, SMCHR, SONOLAR, Spear, STeP, SVC, SWORD,
and UCLID.

SMT-solver technologies cover a wide range of theories and their combina-
tions. The embedding of theory decision procedures into the SMT solving context
requires not only a deep understanding of the individual decision procedures, but

Solver Website Supported SMT-LIB logics

QF_XXX
AProVE [37] | aprove.informatik.rwth-aachen.de NIA
Boolector [55] | fmv.jku.at/boolector ABV, AUFBV, BV, UFBV
Cvc4 [6] | cved.cs.nyu.edu All not involving FP
MathSAT5 [22] | mathsat.fbk.eu All not involving integers
OpenSMT2 [18] | verify.inf.usi.ch/opensmt2 UF
raSAT [43] | github.com/tungvx/raSAT NIA, NRA

SMTInterpol [21] | github.com/ultimate-pa/smtinterpol | All not involving
BV, FP, NRA and NTA

SMT-RAT [26] | github.com/smtrat/smtrat/wiki BV, LIA, LIRA, LRA, NIA,
NIRA, NRA, UF
STP [35] | stp.github.io BV
veriT [16] | www.verit-solver.org All not involving
BV, FP, NRA and NIA
Yices2 [32] | yices.csl.sri.com All not involving FP and NIA
Z3 [51] | z3.codeplex.com All

Table 1. An overview of the SMT solvers for solving quantifier-free logical formulas
that participated in SMT-COMP 2015 (for the naming of the logics see Figure 1 and
the SMT-LIB page [8]).

also a careful software design. We illustrate how an SMT solver can be designed
to support a broad range of logics, and how a user of such a solver can exploit the
versatility, on the example of our SMT-RAT [26] solver. SMT-RAT’s focus is on non-
linear arithmetic. It adapts algebraic decision procedures to the needs of SMT
solving and exploits powerful combinations of these procedures. Currently, it
offers SMT-compliant implementations of the Fourier-Motzkin variable elimina-
tion, the simplex method [28], interval constraint propagation [36, 39], methods
based on Grobner bases [68], the virtual substitution method [69], the cylindri-
cal algebraic decomposition method [24], and a generalised branch-and-bound
method. Additionally it provides a DPLL-style SAT solver as well as several
preprocessing modules.

In SMT-RAT, all these procedures — including the SAT solver and preprocessing
modules — are implemented in encapsulated modules, which share a common
module interface. This modularisation allows for a strategic combination [52] of
these solver modules: whenever a module is unable to solve a specific problem,
it can forward the problem — or sub-problems — to other modules that might be
better suited for the given task.

The strategic combination of solver modules is governed by a user-defined
SMT-RAT strategy. Basically, a strategy is a directed tree, whose nodes are solver
module instances, and whose edges are labelled with conditions. These conditions
are evaluated in the context of a formula; an example for such a condition could
be that the formula is linear, or that the maximal degree of polynomials in the
formula is at most 2.

Manager

A
W

Frontend

<_|_>L Condition Condition Condition|
Module| |Module| |Module| [Module

Fig. 4. Basic structure of an SMT-RAT strategy

Figure 4 illustrates how such a strategy drives the solving procedure. A ded-
icated initial module (the root of the tree) receives the input formula and starts
processing. If an executing module wants to pass on (sub-)problems to other
modules, the conditions on the edges to its children are tested whether they
hold for the given (sub-)problem. For each edge, if its condition holds, the child
module will be invoked to solve the (sub-)problem. If a call to a child-module
terminates, the calling module uses the returned result to continue its solving
process. Note that this way also parallel execution can be implemented. Note
furthermore that also the child modules can invoke further modules on their
(sub-)problems.

In this framework, we can easily generate and test novel combinations of
solving techniques, extend the range of supported logics, or employ parallel exe-
cution without the need to modify the previous implementation. Given a module
that implements a certain decision procedure, it can be directly embedded within
a strategy and thus participate in the overall solving process. Still, it does not
save us the burden of handling the combination of two or more different theories.
Theory combination schemes like Nelson-Oppen [54] are not yet implemented in
SMT-RAT which is why it only supports a relatively small number of individual
logics.

4 Applications

After the previous introduction to satisfiability checking and SMT solvers, let
us turn to applications. In the following we mention some applications from
the most popular areas. SMT solvers are employed in such a wide context that
we cannot claim completeness, not only regarding single applications, but even
regarding the application domains.

Program verification The perhaps most prominent SMT application exam-
ple is program verification. In this area, the success of explicit model checking
is complemented with symbolic and deductive approaches.

Bounded model checking [11] can be used to unroll the transition relation and
to generate, for increasing path lengths, formulas that state the existence of a
property-violating path. SMT solvers can be used to check the involved formu-
las for satisfiability, i.e., to determine whether counterexamples exist. Whereas

the basic approach cannot prove correctness but is rather suited to find coun-
terexamples, it can be extended with, e.g., k-induction to be able to prove the
correctness of programs.

Deductive verification approaches generate verification conditions; if these con-
ditions hold, the program is provably correct. In this context, SMT solvers can
be used to check whether the verification conditions hold. Further methods re-
lated to, e.g., invariant generation, interpolation and predicate abstraction can
be invoked to increase the verification success.

Examples for tools in this area, which embed SMT-solving technologies, are CBMC
[47] (bounded model checker for C and C++ programs), I1¢3 [17, 48] (induction-
based verification approach), PKIND [42] (a parallel k-induction-based model
checker), the Microsoft software model checkers Boogie [15] (intermediate-langu-
age verification) and SLAM [5] (device driver verification), the Rodin platform [31]
for formal development in Event-B, and the SRI tool sAL [60] (infinite bounded
model checker).

Symbolic execution Besides static analysis, SMT solvers are also used for
symbolic execution. For example, the Avalanche tool [3] was developed to identify
input data that reproduces critical bugs and vulnerabilities in programs. The tool
is based on the Valgrind dynamic instrumentation framework. It analyses the
target program by tracing and produces modified input data sets (corresponding
to different execution paths) from the collected data. Finally, every possible
execution path in the target program is traversed and checked for critical runtime
defects. This way, buggy traces can be identified from a single test case.

Test-case generation Due to the growing size of software, verification is not
always applicable. Though the importance of thorough testing is undisputed
among software engineers, crafting meaningful test cases remains a complex
task. An ideal set of test cases should cover every possible code path and be
reasonably concise and readable.

SMT-solving can be of help also in this area. The basic idea is similar to that
of bounded model checking: we can encode paths with certain properties, e.g.,
assuming that certain branches are followed or that certain loops are executed
a given number of times, and use SMT solvers to find paths satisfying the given
requirements. The work [19] reports on a successful application to generate test
cases that cover most of the source code of the GNU Coreutils which “arguably
are the single most heavily tested set of open-source programs in existence”. The
resulting code coverage was improved significantly and ten individual new bugs
were found, therefrom three existing since at least 1992. Another approach for
automated test case generation with SMT solving and abstract interpretation is
proposed in [56].

Superoptimiser compiler backends In the area of compiler construction,
superoptimisation techniques assist to find optimal instruction sequences that
are semantically equivalent to the original code fragment. The tool Souper [65]
uses an SMT solver to automatically find optimisations missed by LLVM (low-
level virtual machine) bit-code optimisers. Another work from this area is [57],
where a simulator is used to evaluate the correctness of a candidate program

on concrete test cases. If a candidate passes all test cases, the search technique
verifies the equivalence of the candidate program and the reference program on
all possible inputs using an SMT solver.

Termination analysis An important question in formal verification is whether
a given program terminates. Though this question is undecidable in general, an
active field of research has emerged on finding provable upper bounds on the
runtime of a program. Usually, finding such complexity bounds requires solving
non-linear integer problems. SAT and SMT techniques are routinely used by all
leading termination analysis tools, for example AProVE [37], TTT5[45] or NaTT[71].
Program synthesis The paper [66] presents an SMT-based approach for
component-based program synthesis. In this work, the synthesis problem is re-
duced to a satisfiability checking problem and an SMT solver is employed to syn-
thesise bit-vector manipulation programs, padding-based encryption schemes,
and block cipher modes of operations.

Planning Planning as satisfiability was introduced in the area of artificial in-
telligence by Kautz and Selman in 1990 for domain-independent planning. This
approach was limited to asynchronous discrete systems expressible in proposi-
tional logic, therefore SAT solvers could be applied. Later the approach was
extended with numeric state variables and continuous time. Both of these exten-
sions include integer- and real-valued state variables, which cannot be effectively
handled by SAT solvers. As described in [59], SMT solvers can successfully solve
such problems, but one needs to pay attention that the problem encoding is done
carefully. To mention some further examples, SMT solvers in the area of planning
were also applied for sequential numeric planning [61]. Another example is the
work [38] which combines planning as satisfiability and SMT to perform efficient
reasoning about actions that occupy realistic time. SMT solving for integrated
task and motion planning is discussed in [53].

Scheduling Many practical problems involve the scheduling of some tasks
or processes. Oftentimes, their nature is not only combinatorial but also in-
volves arithmetic constraints. For example, we might need to consider running
times or certain resource demands in order to satisfy deadlines or to assure
that enough memory is available for execution. SMT solvers, being designed to
handle both combinatorial as well as arithmetic aspects, have been applied for
numerous scheduling problems. The work [14] uses SMT solvers to solve resource-
constrained project scheduling problems, where minimum as well as maximum
delays between tasks are considered. Other examples are, e.g., [568,72,2,27].

Cloud applications With the rise of cloud platforms, web applications have
become much more flexible regarding scalability. However, designing a cloud ap-
plication that consists of multiple components — for example database backends,
webservers and a load balancer — poses the question, how many individual com-
ponents are needed and how they shall be distributed among virtual machines.
This problem has been solved in the Zephyrus tool [20] by the employment of
constraint solving techniques. Based on an ongoing work of the authors with the
tool developers we can state that SMT solvers equipped with linear optimisation
are a valuable addition for such applications and can outperform previously used

solutions. Implementing optimisation techniques for SMT solvers has seen a lot
of progress in the last few years, for example in [63,13,49], thus we expect fur-
ther interesting applications in domains that are so far dominated by constraint
programming techniques.

Another work [12] is devoted the the analysis of cloud contracts, which capture
architectural requirements in datacenters. The contracts are checked using the
SecGuru tool, which is based on SMT solving and models network configurations
in bit-vector arithmetic. SecGuru was also used to automatically validate network
connectivity policies [40].

Hybrid systems reachability analysis Hybrid systems are systems with
mixed discrete-continuous behaviour, typical examples being physical plants
whose behaviour is controlled by a discrete controller. While the controller senses
the plant state and executes control actions in a discrete manner, the dynamic
state of the plant evolves continuously. For such systems, reachability analysis
can be applied to assure that the plant never reaches any critical states.

One way to employ SMT solving technologies for reachability analysis is, simi-
larly to programs, bounded model checking. However, as the dynamic behaviour
is usually modelled using differential equations, the invoked SMT solvers need to
be able to deal with the theory of differential equations. Suitable solvers for this
task are dReach [44, 23] and iSAT-0DE [33]. Beyond reachability analysis, the re-
cent work [4] shows how various verification problems for complex synchronous
hybrid PALS (physically asynchronous, logically synchronous) models can be
reduced to SMT solving.

5 Conclusion

In this paper we gave a short introduction to SAT and SMT solving, discussed
software design issues, and gave a number of SMT-solving applications.

The research area of satisfiability checking is highly active. New results and
novel software engineering solutions constantly improve the power and the prac-
tical applicability of solver technologies. This holds not only for the efficiency, but
also for the functionality of SMT solvers: Latest developments show that SMT
solvers can also be successfully extended to handle, e.g., quantified formulas or
optimisation problems.

We expect this trend to be continued, on the one hand because there are still
unused potentials (for example through building closer interactions with the
symbolic computation community to improve on non-linear arithmetic theories
[1]), and on the other hand because there is still a wide variety of problems,
whose solutions could be improved by using SMT solving.

References

1. Ab]rahéum7 E.: Building bridges between symbolic computation and satisfiability
checking. In: Proc. of ISSAC’15. pp. 1-6. ACM (2015)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Ansétegui, C., Bofill, M., Palahi, M., Suy, J., Villaret, M.: Satisfiability modulo the-

ories: An efficient approach for the resource-constrained project scheduling prob-
lem. In: Proc. of SARA’11. pp. 2-9. AAAI (2011)

Avalanche: Dynamic program analysis tool.
http://www.ispras.ru/en/technologies/avalanche_dynamic_program_analysis_tool/
Bae, K., Olveczky, P.C., Kong, S., Gao, S., Clarke, E.M.: SMT-based analysis of
virtually synchronous distributed hybrid systems. In: Proc. of HSCC’16 (2016), to
appear.

Ball, T., Bounimova, E., Levin, V., De Moura, L.: Efficient evaluation of pointer
predicates with Z3 SMT solver in SLAM2. Tech. rep., Microsoft Research (2010)
Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi¢, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proc. of CAV’11. LNCS, vol. 6806, pp. 171-
177. Springer (2011)

Barrett, C., De Moura, L., Stump, A.: SMT-COMP: Satisfiability modulo theories
competition. In: Proc. of CAV’05. pp. 20-23. Springer (2005)

. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library

(SMT-LIB). www.SMT-LIB.org (2016)

Barrett, C., Sebastiani, R., Seshia, S.A.| Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications,
vol. 185, chap. 26, pp. 825-885. IOS Press (2009)

Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satis-
fiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press
(2009)

Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. of TACAS’99. pp. 193-207. Springer (1999)

Bjgrner, N.; Jayaraman, K.: Checking cloud contracts in Microsoft Azure. In: Proc.
of ICDCIT’15. pp. 21-32. Springer (2015)

Bjgrner, N., Phan, A.D., Fleckenstein, L.: vZ - An optimizing SMT solver. In:
Proc. of TACAS’15, pp. 194-199. Springer (2015)

Bofill, M., Coll, J., Suy, J., Villaret, M.: A system for generation and visualiza-
tion of resource-constrained projects. In: Proc. of CCIA’14. Frontiers in Artificial
Intelligence and Applications, vol. 269, pp. 237-246. IOS Press (2014)

Boogie: An intermediate verification language.
http://research.microsoft.com/en-us/projects/boogie/

Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: An open,
trustable and efficient SMT-solver. In: Proc. of CADE-22. LNCS, vol. 5663, pp.
151-156. Springer (2009)

Bradley, A.R.: SAT-based model checking without unrolling. In: Proc. of VM-
CATI’11. pp. 70-87. Springer (2011)

Bruttomesso, R., et al.: The OpenSMT solver. In: Proc. of TACAS’10. LNCS, vol.
6015, pp. 150-153. Springer (2010)

Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. of OSDI’08. pp.
209-224. USENIX Association (2008)

Catan, M., Cosmo, R., Eiche, A., Lascu, T.A., Lienhardt, M., Mauro, J., Treinen,
R., Zacchiroli, S., Zavattaro, G., Zwolakowski, J.: Aeolus: Mastering the complexity
of cloud application deployment. In: Proc. of ESOCC’13. pp. 1-3. Springer (2013)
Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An interpolating SMT solver. In:
Proc. of SPIN’12. LNCS, vol. 7385, pp. 248-254. Springer (2012)

Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
solver. In: Proc. of TACAS’13, LNCS, vol. 7795, pp. 93-107. Springer (2013)

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Cimatti, A., Mover, S., Tonetta, S.: A quantifier-free SMT encoding of non-linear
hybrid automata. In: Proc. of FMCAD’12. pp. 187-195. IEEE (2012)

Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Automata Theory and Formal Languages. LNCS, vol. 33, pp.
134-183. Springer (1975)

Conchon, S., Iguernelala, M., Mebsout, A.: A collaborative framework for non-
linear integer arithmetic reasoning in Alt-Ergo. In: Proc. of SYNASC’13. pp. 161-
168. IEEE (2013)

Corzilius, F., Kremer, G., Junges, S., Schupp, S., Abrahém, E.: SMT-RAT: An
open source C++ toolbox for strategic and parallel SMT solving. In: Proc. of
SAT’15. LNCS, vol. 9340, pp. 360-368. Springer (2015)

Craciunas, S.S., Oliver, R.S.: SMT-based task- and network-level static schedule
generation for time-triggered networked systems. In: Proc. of RTNS’14. p. 45. ACM
(2014)

Dantzig, G.B.: Linear programming and extensions. Princeton University Press
(1963)

Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394-397 (1962)

Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201-215 (Jul 1960)

Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in Rodin.
Science of Computer Programming 94(P2), 130-143 (2014)

Dutertre, B.: Yices 2.2. In: Proc. of CAV’14. LNCS, vol. 8559, pp. 737-744. Springer
(2014)

Eggers, A., Ramdani, N., Nedialkov, N.S., Franzle, M.: Improving the SAT mod-
ulo ODE approach to hybrid systems analysis by combining different enclosure
methods. Software & Systems Modeling 14(1), 121-148 (2012)

Franzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving
of large non-linear arithmetic constraint systems with complex Boolean struc-
ture. Journal on Satisfiability, Boolean Modeling and Computation 1(3-4), 209-236
(2007)

Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Proc.
of CAV’07. pp. 519-531. Springer (2007)

Gao, S., Ganai, M., Ivanc¢i¢, F., Gupta, A., Sankaranarayanan, S., Clarke, E.M.:
Integrating ICP and LRA solvers for deciding nonlinear real arithmetic problems.
In: Proc. of FMCAD’10. pp. 81-90. IEEE (2010)

Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Pliicker, M.,
Schneider-Kamp, P., Stroder, T., Swiderski, S., Thiemann, R.: Proving termination
of programs automatically with AProVE. In: Proc. of IJCAR’14. LNAI, vol. 8562,
pp. 184-191. Springer (2014)

Hallin, M.: SMT-Based Reasoning and Planning in TAL. Master’s thesis, Linkoping
University (2010)

Herbort, S., Ratz, D.: Improving the efficiency of a nonlinear-system-solver us-
ing a componentwise Newton method. Tech. Rep. 2/1997, Inst. fir Angewandte
Mathematik, University of Karlsruhe (1997)

Jayaraman, K., Bjrner, N., Outhred, G., Kaufman, C.: Au-
tomated analysis and debugging of network connectivity poli-
cies. Tech. Rep. MSR-TR-2014-102, Microsoft Research (2014),
http://research.microsoft.com/apps/pubs/default.aspx?id=225826

Jovanovié, D., de Moura, L.: Solving non-linear arithmetic. In: Proc. of [JCAR’12.
LNAL vol. 7364, pp. 339-354. Springer (2012)

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.
61.

62.

63.

64.

65.

Kahsai, T., Tinelli, C.: PKIND: A parallel k-induction based model checker. arXiv
preprint arXiv:1111.0372 (2011)

Khanh, T.V., Vu, X., Ogawa, M.: raSAT: SMT for polynomial inequality. In: Proc.
of SMT’14. p. 67 (2014)

Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: §-reachability analysis for hybrid
systems. In: Proc. of TACAS’15, LNCS, vol. 9035, pp. 200-205. Springer (2015)
Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2.
In: Proc. of RTA’09. LNCS, vol. 5595, pp. 295-304. Springer (2009)

Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.
Springer (2008)

Kroening, D., Tautschnig, M.: CBMC — C bounded model checker. In: Proc. of
TACAS’14, pp. 389-391. Springer (2014)

Lange, T., Neuhaufler, M.R., Noll, T.: IC3 software model checking on control flow
automata. In: Proc. of FMCAD’15. pp. 97-104. IEEE (2015)

Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: Proc. of POPL’14. pp. 607-618. ACM (2014)
Marques-silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48, 506-521 (1999)

de Moura, L.M., Bjgrner, N.: Z3: An efficient SMT solver. In: Proc. of TACAS’08.
LNCS, vol. 4963, pp. 337-340. Springer (2008)

de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In: Auto-
mated Reasoning and Mathematics, pp. 15-44. Springer (2013)

Nedunuri, S., Prabhu, S.; Moll, M., Chaudhuri, S., Kavraki, L.E.: SMT-based syn-
thesis of integrated task and motion plans from plan outlines. In: Proc. of ICRA’14.
pp. 655-662. IEEE (2014)

Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1(2), 245-257 (1979)
Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. Journal on Satisfiability, Boolean
Modeling and Computation 9, 53-58 (2015)

Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Proc. of NFM’11. pp. 298-312. Springer
(2011)

Phothilimthana, P.M., Thakur, A., Bodik, R., Dhurjati, D.: GreenThumb: Super-
optimizer construction framework. In: Proc. of CCC’16. pp. 261-262. ACM (2016)
Pike, L.: Modeling time-triggered protocols and verifying their real-time schedules.
In: Proc. of FMCAD’07. pp. 231-238. IEEE (2007)

Rintanen, J.: Discretization of temporal models with application to planning with
SMT. In: Proc. of AAAT’15. pp. 3349-3355. AAAT (2015)

Symbolic analysis laboratory. http://sal.csl.sri.com/introduction.shtml

Scala, E., Ramirez, M., Haslum, P., Thiebaux, S.: Numeric planning with disjunc-
tive global constraints via SMT. In: Proc. of ICASP’16 (2016), to appear.
Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in the SMT
solver iSAT. In: Proc. of MBMV’13. pp. 231-241. Institut fiir Angewandte
Mikroelektronik und Datentechnik, Fakultéat fiir Informatik und Elektrotechnik,
Universitat Rostock (2013)

Sebastiani, R., Trentin, P.: OptiMathSAT: A tool for optimization modulo theories.
In: Proc. of CAV’15. pp. 447-454. Springer (2015)

SMT-COMP 2015 result summary.
http://smtcomp.sourceforge.net /2015 /results-summary.shtml (2015)

Souper. http://github.com/google/souper

66.

67.

68.

69.

70.

71.

72.

Tiwari, A., Gascon, A., Dutertre, B.: Program synthesis using dual interpretation.
In: Proc. of CADE-25. pp. 482-497. Springer (2015)

Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Au-
tomation of Reasoning, pp. 466-483. Springer (1983)

Weispfenning, V.: A new approach to quantifier elimination for real algebra. In:
Quantifier Elimination and Cylindrical Algebraic Decomposition. pp. 376-392.
Texts and Monographs in Symbolic Computation, Springer (1998)

Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and
beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85-101 (1997)
Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: A concurrent portfolio approach
to SMT solving. In: Proc. of CAV’09. LNCS, vol. 5643, pp. 715-720. Springer (2009)
Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Rewriting and
Typed Lambda Calculi, pp. 466-475. Springer (2014)

Yuan, M., He, X., Gu, Z.: Hardware/software partitioning and static task schedul-
ing on runtime reconfigurable FPGAs using an SMT solver. In: Proc. of RTAS’08.
pp. 295-304. IEEE (2008)

