
Generalised Branch-and-Bound
and its Application in SAT Modulo Nonlinear Integer Arithmetic

Gereon Kremer
in cooperation with Florian Corzilius and Erika Ábrahám
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Basic framework

Satisfiability problem

Decide whether an existentially quantified formula ϕ(x) is satisfiable

∃x.ϕ(x) ≡ true

Satisfiability modulo theories

ϕ is from an existentially quantified first-order logic

Fully automated solving

Our focus: nonlinear integer arithmetic

Example:

∃x, y.y ≥ x2 − 2

2
∧ y ≤ x

2
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Fundamental idea: SAT vs. Theory

ϕ quantifier-free FO formula
Boolean abstraction

Tseitin’s transformation
ϕ′ propositional logic formula in CNF

SAT solver

Theory solver

theory constraints
SAT

or
UNSAT

+ lemmas

SAT or UNSAT
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Branch-and-Bound [Land, Doig 1960] [Dutertre, de Moura 2006]

Fundamental idea: use a solver for R on problems from Z

Theory solver searches a solution for C = {c1, ..., ck}
If no solution exists: return unsat

If solution is integral: return sat

If solution is fractional: return unknown and generate a lemma

What kind of lemma?

Must be a tautology in the theory

Excludes only non-integral solutions

x→ αx: (c1 ∧ ... ∧ ck)⇒ (x ≤ bαxc ∨ x ≥ dαxe)
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Branch-and-Bound – Example

Example: y ≥ x2/2− 1 ∧ y ≤ x/2

x

y

y ≥ x2/2− 1

y ≤ x/2

y ≤ −1

y ≥ 0
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Example: y ≥ x2/2− 1 ∧ y ≤ x/2

x

y

y ≥ x2/2− 1

y ≤ x/2

y ≤ −1

y ≥ 0

Generate solution x = −1, y = −1
2

Not integral, generate (c1 ∧ c2)⇒ (y ≤ −1 ∨ y ≥ 0)

Pass lemma to SAT solver which selects one part
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SMT solving with B&B

Propagate

Resolveunsat Theory

Decide sat

Branch

co
n

fl
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failed
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Solution strategy for Nonlinear Arithmetic

Eliminate one variable at a time

Separate solution space into satisfiability equivalent regions

Check a single representative for each region
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x

f(x)

f1(x) = x2/2− 1

f2(x) = x/2
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Solution strategy for Nonlinear Arithmetic

Eliminate one variable at a time

Separate solution space into satisfiability equivalent regions

Check a single representative for each region

2-dimensional case

x

y

y = x2/2− 1

y = x/2
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Solution strategy for Nonlinear Arithmetic

Eliminate one variable at a time

Separate solution space into satisfiability equivalent regions

Check a single representative for each region

Open questions:

How to generate roots and samples for 1-dimensional case?

How to create k-dimensional points from (k − 1)-dimensional points?

How to make sure, that (k − 1)-dimensional samples properly
separate k-dimensional regions?
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Virtual Substitution [Weispfenning 1988,1993] [Corzilius+ 2011]

Uses symbolic representation of roots (e.g. using solution formula)

Only for polynomials up to degree two∗

Substitutes roots into polynomials

Example: y ≥ x2/2− 1 ∧ y ≤ x/2

y ≥ x2/2− 1 ∧ y ≤ x/2

...

−∞

true ∧ x2−2
2
≤ x

2

false

−∞

true

−1

true

−1 + ε

true

2

false

2 + ε

x2−2
2

...

x2−2
2

+ ε

...

x
2

...

x
2

+ ε

Satisfying solution: x = −1, y = x2−2
2 = −1

2
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Virtual Substitution [Weispfenning 1988,1993] [Corzilius+ 2011]

Uses symbolic representation of roots (e.g. using solution formula)

Only for polynomials up to degree two∗

Substitutes roots into polynomials
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Virtual Substitution and B&B

If no solution exists: return unsat

Otherwise follow path upwards

y ≥ x2/2− 1 ∧ y ≤ x/2

x2−2
2

true ∧ x2−2
2
≤ x

2

−1

true
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Virtual Substitution and B&B

If no solution exists: return unsat

Otherwise follow path upwards

x = −1: integral

y ≥ x2/2− 1 ∧ y ≤ x/2

x2−2
2

true ∧ x2−2
2
≤ x
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true
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Virtual Substitution and B&B

If no solution exists: return unsat

Otherwise follow path upwards

x = −1: integral

y = x2−2
2 = −1

2 : fractional

Generate (y ≤ −1 ∨ y ≥ 0)

y ≥ x2/2− 1 ∧ y ≤ x/2

x2−2
2

true ∧ x2−2
2
≤ x

2

−1

true
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Cylindrical Algebraic Decomposition [Collins 1975] [Loup+ 2012]

Complete, but doubly exponential runtime

two-phase approach: Projection and Lifting

Projection

Given Pk ⊂ Q[x1, ..., xk] construct Pk−1 ⊂ Q[x1, ..., xk−1] such that:

ξ1, ..., ξk is a root of Pk ⇒ ξ1, ..., ξk−1 is a root of Pk−1

Lifting

Given Pk and ξ1, ..., ξk−1, we can obtain all roots of Pk by

substituting all ξi and

calculating univariate roots of Pk[xi/ξi].
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Cylindrical Algebraic Decomposition

Example: y ≥ x2/2− 1 ∧ y ≤ x/2

P2 : {y − x2

2
− 1, y − x

2
}

P1 : {x2 − x− 2, x2 − 2, x} 2
√
20−1

3
2

− 1
2−1

−
√
2

roots({x2 − x− 2, x2 − 2, x})

y − 3
2
, y + 1

2

Satisfying solution: x = −1, y = −1
2

Note: intermediate samples were skipped
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Cylindrical Algebraic Decomposition and B&B

Some heuristics (that worked for us)

Try to select integers
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Cylindrical Algebraic Decomposition and B&B

Some heuristics (that worked for us)

Try to select integers

Select integers from the middle of interval

Continue lifting to avoid splitting on unsat samples
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Cylindrical Algebraic Decomposition and B&B

Some heuristics (that worked for us)

Try to select integers

Select integers from the middle of interval

Continue lifting to avoid splitting on unsat samples

Do not lift multiple integers from a single interval

Be careful with more involved backtracking schemes
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Cylindrical Algebraic Decomposition and B&B

Some heuristics (that worked for us)

Try to select integers

Select integers from the middle of interval

Continue lifting to avoid splitting on unsat samples

Do not lift multiple integers from a single interval

Be careful with more involved backtracking schemes

Different lemmas if multiple assignments are rational:

Smallest variable
Largest variable
Activity-based

→ does not matter
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What about existing tools?

Linearization [Borralleras+ 2009]

Approximation and incremental refinement by an LIA formula

Interval Constraint Propagation (iSAT3[Scheibler+ 2013], raSAT[Van Kanh+ 2014])
Use bounds on variables to shrink solution space

Bit-blasting (AProVE[Giesl+ 2014], CVC4[Barrett+ 2011], Z3[de Moura 2012])
Encode integers as vectors of boolean variables
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Our approach

Strategies

RATZ : MSAT → MLRA → MVSZ → MCADZ

RATblast : MIncWidth → MIntBlast

RATblast.Z : MIncWidth → MIntBlast → RATZ

RATZ: uses branch-and-bound approach as described

MIntBlast: used bit-blasting approach

MIncWidth: creates and widens artificial bounds on all variables

RATblast.Z: uses MIncWidth up to 4 bits and uses RATZ afterwards

Rationale: find small solutions fast, use RATZ for large solutions
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Experimental results

Benchmark→ AProve (8129) Calypto (138) Leipzig (167) Calypto∞ (138) all (8572)
Solver↓ # time # time # time # time # time

RATZ sat 7283 2294.8 67 71.2 9 260.4 133 298.9 7492 2925.3
unsat 73 14.3 52 40.7 0 0.0 3 < 0.1 128 55.1

RATblast sat 8025 866.3 21 35.6 156 603.3 87 16.0 8289 1521.2
unsat 12 0.4 5 0.1 0 0.0 0 0.0 17 0.5

RATblast.Z sat 8025 780.7 79 122.3 156 511.5 134 21.8 8394 1436.3
unsat 71 42.6 46 127.5 0 0.0 3 0.1 120 170.2

Z3 sat 7992 14695.5 78 19.1 158 427.6 126 57.3 8354 15199.5
unsat 102 595.9 57 117.6 0 0.0 3 2.3 162 715.8

AProVE sat 8025 7052.2 74 559.1 159 696.5 127 685.2 8385 8993.0
unsat 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0

Comparing against Z3 and AProVE:

Good on sat, lagging behind for unsat (preprocessing?)

Very fast (we start with a smaller bit-width)

Comparing our strategies:

RATZ complements RATblast nicely on many examples
RATZ finds large solution fast in many cases
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Experimental results

70% 75% 80% 85% 90% 95% 100%

102s

103s

104s

RATZ Z3 4.4.1

RATblast AProVE

RATblast.Z
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https://github.com/z3prover/z3/wiki
http://http://aprove.informatik.rwth-aachen.de/


Conclusion

Branch-and-Bound is applied naturally to nonlinear arithmetic

Comparably easy implementation

Many possibilities for heuristics

Nicely complements bit-blasting approach

Benefits from improvements on NRA
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