
Acta Univ. Sapientiae, Informatica, x, y (201z) xx–yy

Modular Strategic SMT Solving with

SMT-RAT∗

Abstract.
In this paper we present the latest developments in SMT-RAT, a tool

for the automated check of quantifier-free real and integer arithmetic for-
mulas for satisfiability. As a distinguishing feature, SMT-RAT provides a
set of solving modules and supports their strategic combination. We de-
scribe our CArL library for arithmetic computations, the available mod-
ules implemented on top of CArL, and how modules can be combined
to satisfiability-modulo-theories (SMT) solvers. Besides the traditional
SMT approach, some new modules support also the recently proposed
and highly promising model-constructing satisfiability calculus approach.

1 Introduction

The problem of checking the satisfiability of first-order logic formulas appears
in many different areas like, e.g., program verification or synthesis approaches
like planning or scheduling. On the one hand, solving arithmetic formulas has
deep historical roots in mathematical logic and symbolic computation. On the
other hand, the last decades led to fruitful developments also in computer
science, resulting in efficient SAT and satisfiability-modulo-theories (SMT )
solvers. Whereas at the beginning SMT solvers focused on theories for equality
logic and uninterpreted functions, bit-vectors, arrays and floating-point arith-
metic, recently notable achievements were made also for arithmetic theories.
For the support of polynomial constraints over the reals interesting symbio-
sis evolved between symbolic computation and satisfiability checking, learning
from each other and mutually integrating successful techniques from the re-
spective areas.

∗This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No H2020-FETOPEN-2015-CSA 712689.

Computing Classification System 1998: I.2.8
Mathematics Subject Classification 2010: 68-04
Key words and phrases: satisfiability modulo theories, polynomial arithmetic, strategic
combination

1



2

In this paper we describe recent developments for our SMT solver SMT-RAT

[CLJA12, CKJ+15], which is mainly developed for checking the satisfiability of
quantifier-free real and integer arithmetic formulas. A distinguishing feature of
SMT-RAT is that is offers a library of decision procedure modules, which share
a common interface structure such that they can be strategically combined
based on user-defined specifications to efficient SMT solvers.

The majority of the decision procedures that are implemented in those
SMT-RAT modules stem from the area of symbolic computation, for which im-
plementations in computer algebra systems are available. Examples for such
theory solving procedures are the simplex method, methods using Gröbner
bases, the subtropical satisfiability method, the virtual substitution method
or the cylindrical algebraic decomposition method. Thus it is natural to think
of invoking their implementations provided by different computer algebra sys-
tems. However, there are several obstacles that hinder their direct embedding
in SMT solvers. Firstly, SMT solvers for arithmetic problems need modules
to check the consistency of sets of polynomial constraints in an incremen-
tal fashion, meaning that after the consistency of a constraint set has been
determined, the consistency of an extended set needs to be checked. Such in-
cremental consistency checks need to be executed frequently, therefore it is
important that they are not done independently but re-use information from
previous checks as much as possible. Secondly, in case of inconsistency, these
modules need to return an explanation for unsatisfiability, e.g. in the form
of an inconsistent subset of the constraints. Thirdly, SMT solvers explore the
space of possible solutions in an enumerative manner, accompanied by smart
propagation, resolution and learning procedures to avoid unnecessary work in
unsatisfiable parts of the search space. Once it is detected that the currently
considered part of the search space does not contain satisfying solutions, back-
tracking takes place, which requires also backtracking ability for the theory
solver. Unfortunately, implementations in computer algebra systems do not
provide these functionalities. Therefore, we implemented adaptations for sev-
eral such methods as SMT-RAT modules that satisfy the above requirements.

These implementations in SMT-RAT required support for basic arithmetic
computations like algorithms for polynomial division or calculating the great-
est common divisor of two (multivariate) polynomials. Today’s commonly used
computer algebra systems like Maple, Mathematica, Singular, GAP or Reduce of-
fer a rich set of highly efficient algorithms on polynomials [GCL92], while also
putting the focus on the user interface and graphical capabilities. Therefore,
we experimented with their usage for our SMT-RAT modules. However, we ex-
perienced a major communication bottleneck at the interface between SMT-RAT



3

and external tools: the frequent exchange of large constraint sets is very time
consuming. Additionally, as the two communication sides use different data
types to represent numbers, arithmetic expressions and constraints, the fre-
quent communication caused a serious overhead also for datatype conversion.

An optimal solution can be offered by a (preferably free and open-source)
library for arithmetic computations, which offers an object-oriented, generic
and modular data structure for polynomials or, even better, formulas over
polynomial constraints. Though a few libraries exist that try to bridge this
gap, for example GiNaC [BFK02] and CoCoALib [AB10], they all have various
downsides that led us to implement our own C++ library CArL. It is clearly not
one of our short- or medium-term goals to compete with the performance of
these algorithms on arbitrary inputs, when implementing a polynomial arith-
metic library from scratch. However, we hope that in the long-term our tool
will provide helpful support to other research groups in the SMT community
and beyond.

Previously we reported on our software developments in [CLJA12] in 2012
and in [CKJ+15] in 2015. The novel contributions of this paper are (i) the
introduction of the CArL library and (ii) the description of SMT-RAT with a
special focus on three new solver modules in the latest release.

The rest of this paper is structured as follows. In Section 2 we give a short
introduction to SAT and SMT solving and briefly explain the main ideas of
some relevant algebraic decision procedures. In Section 3 we introduce our
arithmetic library CArL, followed by a description of our SMT solver SMT-RAT

and its new modules in Section 4. Finally we provide some experimental results
in Section 5 before we conclude the paper in Section 6.

2 Preliminaries

Traditionally, satisfiability checking aims at the automated check of the satisfi-
ability of quantifier-free first-order logic formulas over some theories, whereas
recent developments extend the functionalities for satisfiability checking to,
e.g., quantified formulas or optimization. In this paper we focus on checking
the satisfiability of quantifier-free real arithmetic formulas, which are Boolean
combinations of constraints comparing polynomials over real-valued variables
to zero.

SAT solving The success story of satisfiability checking started with SAT
solving for propositional logic. The main strength of SAT solving is a highly



4

efficient heuristic combination of enumeration, propagation, resolution and
learning [DP60, MSS99]. The input is a propositional logic formula, which is
a Boolean combination (using operators for negation ¬, conjunction ∧, dis-
junction ∨ etc.) of Boolean variables called propositions. The input formula
is first transformed into conjunctive normal form (CNF ) in linear time and
space on the cost of additional variables using Tseitin’s transformation [Tse83].
The result is a conjunction of disjunctions of possibly negated propositions;
propositions and negated propositions are called literals and their disjunctions
clauses. Enumeration is used to explore possible solutions, deciding which val-
ues for which propositions should be tried first. After each such decision, which
is actually a guess for satisfying variable values, propagation is applied to de-
tect certain implications of the current assignments and thus to reduce the
number of “wrong guesses”. For example, if the CNF contains a clause (a∨ b)
and the value false is decided for a then propagation assigns true to b in or-
der to satisfy the clause. However, propagation cannot always avoid running
into an unsatisfiable assignment. For example, the previous assignments would
lead to the violation of the clause (a ∨ ¬b). When such a conflict is detected,
resolution is applied to determine a reason for the conflict; in our example,
resolving the two clauses (a ∨ b) and (a ∨ ¬b) would result in the resolvent
(a). Learning the reason for the conflict will protect the future search from
running into conflicts with the same reason.

SMT solving The impressive success of SAT solving led to the idea to
extend the technology to check satisfiability also for quantifier-free formulas
over different theories. Satisfiability modulo theories (SMT ) solving started
for equalities and uninterpreted functions, theories relevant for program veri-
fication (arrays, bit-vectors, floating-point arithmetic etc.) and linear real and
integer arithmetic. Nowadays, powerful tools exist that can handle also harder
theories like, e.g., nonlinear arithmetic formulas. Some popular SMT solvers
for arithmetic theories are, e.g., AProVE [GBE+14], CVC4 [BCD+11], MathSAT5
[CGSS13], raSAT [KVO14], veriT [BdODF09], Yices2 [Dut14], Z3 [dMB08] and
our solver SMT-RAT [CKJ+15].

SMT solving typically works in a lazy fashion, meaning that the solver prior-
itizes to satisfy the Boolean structure of the formula first and check consistency
in the theory afterwards. To do so, the Boolean skeleton or Boolean abstraction
of the input formula is generated by replacing each theory constraint by a fresh
proposition, resulting in a propositional logic formula, which can be checked
for satisfiability by a SAT solver. If the skeleton is unsatisfiable then the in-
put formula is unsatisfiable, too. Otherwise, if the SAT solver has determined



5

a Boolean solution for the skeleton then suitable theory solvers are invoked
to check whether all constraints with true abstraction propositions and the
negations of all constraints with false abstraction propositions are together
consistent. If this is the case then a satisfying solution for the input formula
is found. Otherwise, the theory solvers need to provide an explanation for the
inconsistency, typically by returning an inconsistent subset of the considered
constraints. Learning the Boolean abstraction of this explanation refines the
Boolean abstraction, avoiding Boolean solutions with the same theory conflict
in future search. Besides such full lazy approaches, less lazy variants check
theory consistency more frequently (usually after the full propagation of each
Boolean decision).

MCSAT A recent technique called model constructing satisfiability calculus
(MCSAT [dMJ13]) generalizes the above approach by defining a set of deriva-
tion rules, which includes besides Boolean decision, propagation and conflict
resolution also their counterparts for the theory. Especially, MCSAT provides
the possibility to guess not only truth values for the theory constraints but also
values for the theory variables, and use some theory propagation techniques
to drive the search for further theory variable values away from unsatisfiable
parts of the state space. For example, if we decide to try the value 0 for a
theory variable x and a constraint x > y should hold according to the Boolean
search then we need to guess a negative value for y, e.g. −1. However, if also
the constraint x2 > y2 should hold then we have run into a theory conflict,
because for x = 0 there is no value for y that would satisfy both constraints.
In such cases, the theory conflict needs to be explained by a lemma, which
in the optimal case generalizes the current conflict and helps to exclude from
further search not only the current assignment but also others with similar
reasons for being unsatisfying. For our example, the solver could explain the
conflict by returning x2 > y2 → x > 0.

Theory decision procedures As mentioned above, SMT solvers use, be-
sides SAT solvers, also theory solvers, which need to check sets or conjunctions
of theory constraints for consistency. Furthermore, for efficiency reasons, in the
less lazy setting theory solvers should work incrementally, meaning that if a
set of constraints is found satisfiable and the set is extended by adding some
further constraints then the theory solver should not check the consistency of
the extended set from anew but re-use previous results as much as possible.
Additionally, for inconsistent constraint sets the theory solvers must be able



6

to provide explanations.
For this purpose, we use decision procedures for arithmetic theories devel-

oped in symbolic computation and implemented in computer algebra systems.
The symbiosis of these methods with SAT solving is fruitful because these
methods are good at checking sets of constraints for satisfiability but they are
not designed for combinatorial checks in Boolean structures. In the following
we describe some of these procedures in a nutshell.

• Interval constraint propagation (ICP) [GGI+10, HR97] uses interval arith-
metic to contract given variable domains under the assumption of certain
constraints. For example, if x ∈ [0, 2] and y ∈ [1, 3] and x = y should hold
then ICP can imply that x ∈ [1, 2] and y ∈ [1, 2]. ICP is very powerful
and can be applied to nonlinear arithmetic involving also trigonometric
and transcendental functions, but it is incomplete in general.

• The simplex method [Dan63] is applicable to linear real arithmetic. Orig-
inally it was developed for optimization but in the SMT context we use
it for satisfiability checking only. The main idea is to start from an ini-
tial variable assignment satisfying a set of equalities and modify this
assignment step-wise to satisfy also additional variable bounds.

• The Fourier-Motzkin variable elimination allows to perform quantifier
elimination on sets of linear real arithmetic constraints. The idea is that
if two constraints define a lower and an upper bound respectively on a
variable than satisfiability requires the lower bound to be smaller (or
equal, depending on the comparison operator) than the upper bound.
For example, 2y < x and x < w requires 2y < w. Collecting these
requirements for all lower-upper-bound pairs on x allows to eliminate x
from the constraint system.

• The original idea of the virtual substitution method [Wei97] is to use
solution equations to solve multivariate low-degree constraints symbol-
ically and substitute these solutions into the other constraints to elim-
inate variables. As these symbolic solutions might contain e.g. square
roots, special virtual substitution rules are applied which produce stan-
dard arithmetic constraints after the substitution. The method requires
the degree of the polynomials to be bounded and is thus incomplete in
general.

• The cylindrical algebraic decomposition (CAD) method [Col75] is a deci-
sion procedure for real arithmetic. It is a quantifier elimination method,



7

which decomposes the state space into a finite number of sign-invariant
(or truth-invariant) regions, such that in each region either all points sat-
isfy the input formula or none of them does so. Therefore, it is sufficient
to take a single sample point from each region to check whether any of
the sample points satisfies the formula. The CAD method is complete
but in worst case it comes with doubly exponential solving effort.

• A recent incomplete but highly efficient method for finding solutions
for real-arithmetic constraint sets is the subtropical satisfiability method
[FOSV17]. It analyzes the exponent vectors of the monomials in the
constraints and tries to find dominating monomials whose values can
be made larger or smaller than all other monomial values. For example,
x3y + x2y2 + y < 0 is satisfiable because for any positive value for y
we can find a sufficiently small value for x such that x3y becomes the
dominating monomial that makes the polynomial x3y+x2y2+y negative.

• The incomplete branch-and-bound method [KCÁ16] can be used to ex-
tend decision procedures for real arithmetic to check the satisfiability of
integer arithmetic constraint sets. It first checks the real relaxation of
the input constraints using some decision procedure for the reals, i.e.,
assuming the variables to be real-valued instead of integer-valued. If no
solution exists in the real domain then there is no integer solution. If an
integer solution is found by the real-valued search then the formula is
satisfiable. Otherwise, if a real-valued solution v is found for an integer
variable x then the search branches on values for x that are either less
than the largest integer below v or larger than the smallest integer above
v.

However, practical implementations of these procedures are usually not de-
signed to work incrementally and they neither support the generation of ex-
planations. Therefore, before their embedding in SMT solving they need to be
adapted to satisfy these requirements.

3 CArL

For any project that aims to work on arithmetic formulas, some data struc-
tures are needed to represent numbers, polynomials, and formulas. Data types
for the exact representation of real numbers of arbitrary size in C++ are pro-
vided e.g. by the libraries gmp and cln. Similar support is available for other



8

languages like Java or Python. However, general-purpose libraries for the rep-
resentation of real-algebraic numbers, polynomials, polynomial constraints and
algebraic formulas, and efficient implementations of polynomial computations
– ranging from addition and multiplication to pretty complex operations like
greatest common divisor or factorization – are much more rare.

There are manifold reasons for this support gap. First of all, the range of
algorithms that work on polynomials is extremely large and diverse, such that
it is futile to attempt to exhaustively implement all algorithms. Furthermore,
different representations tend to provide vastly different performance on differ-
ent inputs and thus the application domain must be taken into consideration.

One attempt to provide a fairly generic C++ library for polynomial arith-
metic is GiNaC [BFK02] . In contrast to computer algebra systems, GiNaC is
designed as an open framework to be integrated in other tools, providing sym-
bolic manipulations like arithmetic operations on polynomials. Its popularity
reveals the urgent need for such a library. It is used for example for sym-
bolic execution [AGWC10], probabilistic pointer analysis [CHJL04], and in
the parametric probabilistic model checker PARAM [HHWZ10].

However, GiNaC is not generic in the sense that it does not allow arbitrary
coefficient types for the polynomials, and provides no possibility to influence
the ordering of the variables and monomials in the polynomials. Both are cru-
cial for the efficient implementation of many algorithms, for example decision
procedures based on Gröbner bases [Buc02] or the cylindrical algebraic de-
composition method [Col75]. Furthermore, GiNaC lacks thread safety, thus it
cannot be used safely in parallelized applications.

Another C++ library is CoCoALib [AB10] which also provides many arithmetic
operations on polynomials, though it is mostly tailored to the computation of
Gröbner bases. Unfortunately, all CoCoALib polynomials are elements of some
polynomial ring with a fixed variable ordering and polynomials of different
rings are not directly compatible. This is a major obstacle whenever fresh vari-
ables are introduced or a certain operation is only performed on a small subset
of the variables or on a different variable ordering. Furthermore CoCoALib does
not offer certain operations that are needed for methods like the cylindrical
algebraic decomposition.

After having experimented with available libraries, we decided to develop
a free and open-source Computer Arithmetic Library CArL1 from scratch in
C++ to overcome these problems. The focus of CArL lies on efficient generic
data types and algorithms for polynomials and arithmetic formulas, but also

1Available at https://github.com/smtrat/carl.

https://github.com/smtrat/carl


9

includes bit vectors and uninterpreted variables and functions.
Most of the data structures in CArL can be instantiated with different num-

ber types; it ships support for gmp, cln and native integers, as well as wrappers
for MPFR and Z3 rationals. For algebraic methods like the cylindrical algebraic
decomposition method, CArL implements real-algebraic numbers – either in in-
terval representation or using an encoding based on Thom’s lemma. Further-
more, CArL implements an extension of the templated boost intervals, which
allows open and closed bounds, and implements methods which are essential
for interval constraint propagation techniques.

The library offers a variety of methods for computations with polynomi-
als. Some of them provide basic functionalities like for example to get the list
of variables of a polynomial, to check whether a polynomial is univariate, to
iterate over the terms of a polynomial, to apply addition, subtraction, multi-
plication, substitution, comparison and evaluation, to normalize polynomials
or to compute their derivatives. For univariate polynomials CArL can compute
Cauchy and other bounds on the real zeros, Strum sequences and their sign
variations, resultants and sub-resultants, discriminants and real root isolations.
Further methods for multivariate polynomials implement for example test for
definiteness, sum of squares decomposition, polynomial (pseudo-)division and
(pseudo-)remainder computation, factorization, computations of co-prime fac-
tors of coefficients, or S-polynomials. CArL even features its own implementa-
tion of Gröbner bases with a particular focus on the support of incrementality.
Additionally to polynomial expression, for methods like the virtual substitu-
tion CArL also offers a data types for fractions and square root expressions.

To easily borrow further advanced functionality from other libraries or com-
pare against their implementation, CArL integrates CoCoALib and GiNaC, offer-
ing alternative implementations for e.g. polynomial factorization, multivariate
polynomial greatest common divisor and Gröbner bases computations. A pre-
liminary integration of Maple– given an existing Maple installation – is also
available.

Moreover, CArL bundles a lot of utility functionality that we deem useful
when implementing any kind of tool similar to an SMT solver.

4 SMT-RAT

The efficient solving of some variant of the satisfiability problem is a corner-
stone for many techniques in formal verification and numerous industrial ap-
plications. We focus on the satisfiability modulo theories (SMT) problem that



10

combines Boolean satisfiability with one or more theories, for example nonlin-
ear arithmetic. A number of open-source solvers exist that tackle this class of
problems with great success, for example CVC4 [BCD+11], raSAT [TVKO17],
veriT [BdODF09], Yices2 [Dut14] or Z3 [dMB08].

Our goal is to combine various techniques for SMT solving and study the
interaction of different approaches. This requires a framework that allows a
user to compose an SMT solver from individual modules easily in a very flexible
way. Though the aforementioned solvers all have different solution techniques
and more or less powerful mechanisms to combine them, we want this strategic
combination of modules to be very transparent to the user. This idea is at the
core of our SMT solving library SMT-RAT2.

SMT-RAT is a library meant for, but not limited to, SMT solving. Though
it can be used as-is to compose a stand-alone SMT solver – and this is how
we use it most of the time – it is intended to be employed in either other
SMT solvers or even be used for other solving tasks. The focus on modularity
and composability yields a framework where the individual solver modules
have a well-defined interface and are completely decoupled otherwise. This
allows for an easy extension of SMT-RAT by new solving techniques without a
lot of required knowledge about the overall architecture and other modules.
Undergraduate students routinely implement new theory solver modules or
extend existing ones for various logics in practical courses or as thesis projects
[Cor11] [Jun12] [Red12] [Scu12] [Kre13] [Sch13] [Krü15] [Net15] [Neu15] [Vie16]
[Win16] [Gro17] [Hen17] [Nal17] [Hae17].

4.1 Previous SMT-RAT Solver Modules

SMT-RAT holds a rich collection of solver modules that can be grouped into pre-
processing modules applying simplifications, decision procedure modules that
implement satisfiability checking procedures and meta modules, though the
border is sometimes blurry.

Preprocessing modules Oftentimes input problems have a certain struc-
ture that allows for some simplifications. SMT-RAT contains a collection of pre-
processing techniques to exploit such possibilities. The ESModule searches for
variables occurring linearly in equations that must hold and eliminate them.
The GBPPModule is based on Gröbner bases and uses nonlinear equalities to
simplify inequalities. Certain patterns of circular inequalities can be exploited

2Available at https://github.com/smtrat/smtrat.

https://github.com/smtrat/smtrat


11

with the ICEModule to eliminate variables. Some encodings of a multiple choice
scenario can be simplified to Boolean decisions using the MCBModule. The
PFEModule uses bounds on arithmetic variables to identify and remove sign-
invariant factors of polynomials. Finally, the SymmetryModule identifies and
breaks symmetries on both Boolean and theory variables.

Decision procedure modules At the core of most modern SMT solvers,
and SMT-RAT is not different here, is a SAT solver. SMT-RAT uses MiniSat [ES04]
as its SATModule, which employs CDCL(T)-style SAT solving and forwards
theory calls to its backends. As theory solvers, SMT-RAT offers implementa-
tions of several complete and incomplete decision procedures, each of them
encapsulated in a module.

The theory of bit-vectors is handled by the BVModule [Krü15] that encodes
bit-vector constraints to propositional logic similar to [FGM+07]. Another
variant of theory constraints supported by SMT-RAT are pseudo-Boolean con-
straints – arithmetic constraints over Boolean variables. These are transformed
by the PBPPModule [Gro17] to either propositional or arithmetic formulas.

Linear arithmetic can be solved using the FouMoModule, which implements
a variant of Fourier-Motzkin variable elimination, or the LRAModule which im-
plements the simplex method in the spirit of [DdM06], including support for
linear integer arithmetic. Additionally the CubeLIAModule provides an incom-
plete but fast test for linear integer arithmetic inspired by [BW16].

The focus of our research lies however on nonlinear arithmetic. The cylindri-
cal algebraic decomposition method is implemented in the CADModule [CKJ+15,
KCÁ16, VKA17], the only complete SMT-RAT module for nonlinear real arith-
metic, which is complemented by different incomplete solver modules. The
GBModule [JLCÁ13] uses a variant Gröbner bases to determine satisfiability
over the reals. The virtual substitution method with various optimizations is
implemented in the VSModule [Cor16]. Another very popular method is inter-
val constraint propagation that is available through the ICPModule [Sch13].
All these modules can also work on nonlinear integer arithmetic problems
using the branch-and-bound technique, though all of them are incomplete
due to the undecidability of non-linear integer arithmetic. Additionally the
IntBlastModule [Krü15, KCÁ16] encodes bounded nonlinear integer prob-
lems in bit-vector arithmetic, similar to what most other solvers do for this
kind of problems.



12

Meta modules These solver modules do not implement any solving tech-
nique by themselves, but connect other modules. Meta modules extend what
the user can do with the strategy framework: they allow to keep the strategy
formalism comparably simple, as more complicated and technical components
can be implemented as meta modules that encapsulate a specific strategic
feature.

One such example is the FPPModule which applies a given strategy of pre-
processing techniques to simplify a formula multiple times until a fixed-point
is reached and no further simplifications can be done.

4.2 New Modules

There are three new decision procedure modules in the latest SMT-RAT release.

Subtropical satisfiability The STropModule implements a quick check for
satisfiability following the idea of [FOSV17] as briefly explained in Section 2.
This method is very fast but incomplete: either it finds a satisfying solution
or returns unknown, but it is not able to determine unsatisfiability.

Cylindrical algebraic decomposition The new version of SMT-RAT of-
fers a complete re-implementation of the CAD method in the solver module
NewCADModule. The advantage of this new CAD module lies in its data stuc-
tures. The CAD method consists of two phases (projection and construction),
both of them spanning a tree-structured search. Compared to the original
CADModule the data structures for the projection and construction phases are
more modular and allow for more flexibility. For example, the sample point
construction can be performed in any heuristic order and more advanced op-
timizations like equations constraints could be integrated.

MCSAT-style SMT Solving As briefly mentioned in Section 2, an ap-
proach called model-constructing satisfiability calculus [dMJ13] (MCSAT ) was
proposed recently, firstly instantiated for nonlinear arithmetic which is called
NLSAT [JdM12]. Given its great success on nonlinear arithmetic problems, we
developed a new SMT-RAT module to support MCSAT-style SMT solving based
on the cylindrical algebraic decomposition.

As of now, SMT-RAT features the core solving engine for MCSAT-style solving
and explanation functions based on CAD in the spirit of NLSAT and a first ver-
sion using Fourier-Motzkin variable elimination for linear problems. Current
work includes a more powerful implementation based on Fourier-Motzkin that



13

also handles certain nonlinear cases, explanations based on virtual substitution
for conflicts of bounded degree as described in [ÁNK17] and an implementa-
tion of the OneCell [BK15] approach. As for CDCL(T)-style SMT solving, we
work on combining the different explanation functions in a meaningful way.

The current version of SMT-RAT can be compiled to an MCSAT-style SMT
solver using an NLSAT-style explanation and it seems to work reliably on the
SMT-LIB benchmark set. It is rather premature still and should be considered
work-in-progress. Because MCSAT-style reasoning requires a close interaction
between the SAT solver and the theory module, our MCSAT module is cur-
rently integrated in the SAT module and can be activated through a dedicated
module configuration. In a later release we will improve the modularity for
MCSAT support.

4.3 Strategic Combination of Solver Modules

The fundamental idea of SMT-RAT is to use a strategic combination of solver
modules for SMT solving. A module encapsulates a single solving technique
and multiple modules can be composed to form a strategy. The manager takes
care of parsing the input formula and executing the strategy on it, possibly
exploiting opportunities to execute multiple branches of the strategy in par-
allel.

Every module works on a set of received formulas Crcv that are the input
to the solving technique. The module can be asked to check the consistency
of the (conjunction of the) received formulas, to which the module can return
sat, unsat or unknown. In case of satisfiability, the module may be asked to
construct a satisfying assignment while unsatisfiability must be proven with
an infeasible subset of Crcv. Common extensions like the generation of theory
lemmas or multiple infeasible subsets are supported as well.

While working on some received formula, a module may ask other modules
for help by adding formulas to the set of passed formulas Cpass and ask its
backends to decide upon the satisfiability of this (sub-)problem. The back-
ends of a module are defined by the strategy and can be annotated with
conditionals that specify when a backend should be used. These conditionals
could check whether the current formula is linear, argues over bit-vectors or
contains weak inequalities. When a module calls its backends, the manager
collects all backends whose conditionals evaluate to true on Cpass and executes
them sequentially or in parallel, according to the strategy specification. For
these backend modules, Crcv is identical to Cpass of the calling module.

We illustrate a possible strategy in Figure 1 that can solve formulas over



14

Figure 1: An example SMT-RAT strategy

PPStrategy

ESModule GBPPModule SymmetryModule PFEModule

FPPModule SATModule LRAModule

ICPModule CADModule

VSModule CADModule

BVModule SATModule

!has(BV)

has(BV)

bit-vectors and arithmetic theories. It starts with the meta-module FPPModule
that uses the strategy PPStrategy to employ a series of preprocessing mod-
ules: ESModule, GBPPModule, SymmetryModule and PFEModule. The prepro-
cessed input is then forwarded either to the BVModule or to a SATModule that
forwards theory calls to the LRAModule module. The LRAModule module tries
to determine satisfiability and if it fails then it forwards the formula to its
backends that use interval constraint propagation (ICPModule) or the virtual
substitution (VSModule) method which are both incomplete and use the cylin-
drical algebraic decomposition method (CADModule) as a fallback. Note that
the interval constraint propagation and the virtual substitution methods are
called unconditionally and are thus both executed in parallel, the result of the
first one to finish being returned to the LRAModule module.

All modules are thread-safe and can be used multiple times, for example
the SATModule and the CADModule each have to instances that are completely
independent of each other. In particular, different instances can be executed
using different configurations that specify certain heuristics. The strict sepa-
ration of procedures into modules that are sealed from each other is a great
asset as it allows a high degree of flexibility and modularity and also signif-
icantly simplifies the implementation of new modules. This means, however,
also that all modules should accept all possible input formulas as input. Thus
if a module is called with a formula whose solution is not supported by the
module than it should either call backend modules or return unknown.



15

5 Experimental Results

The presented software, both CArL and SMT-RAT, are meant to be used within
other projects in a community that emphasizes performance, albeit not as
much as correctness. It is therefore important that it performs reasonably well
on practical problems, in particular as competitors exist. We want to point out
that we do not aim to be the fastest solver for any given logic for two reasons:
firstly, we consider SMT-RAT a framework to allow for low-threshold research
on novel SMT-related research; secondly, beating all the other solvers in a
particular logic would exhaust too many resources on our side. Nevertheless,
we need to perform reasonably well such that using CArL or SMT-RAT makes
sense at all. We therefore present a couple of experiments for both CArL and
SMT-RAT to give a feeling for the level of performance that can be expected.

5.1 Computations with Polynomials

First we compare the implementation of multivariate polynomials from CArL,
CoCoALib and GiNaC. We start with basic operations to compare, multiply
and divide multivariate polynomials. Furthermore we compute the pseudo-
remainder and resultant of multivariate polynomials and substitute individual
variables by polynomials.

Figure 2 shows some experimental results for these operations. We con-
structed a reasonably large set of random inputs (100 for multiplication,
pseudo-remainder and resultant, 1000 for comparison, division and substitu-
tion) for every operation of the degree depicted on the x axis and give the
cumulative computation time in seconds. Note that all three libraries run on
the exact same inputs and the conversions from one representation to another
are not included in the results. We have been unable to find an implemen-
tation for the pseudo-remainder, resultant and substitution in CoCoALib and
therefore only compare with GiNaC in these cases. We can see that CArL signif-
icantly outperforms GiNaC on all operations shown here and is comparable to
CoCoALib.

Note that some more challenging algorithms like multivariate greatest com-
mon divisor of multivariate factorization are not implemented in CArL directly,
but instead CArL provides a seamless integration of either GiNaC or CoCoALib.
Comparisons of these methods are therefore not meaningful.



16

Figure 2: Experimental results for polynomial computations

(a) Comparison

20 22 24 26 28
0

0.1

0.2

0.3

0.4
CArL
GiNaC
CoCoA

(b) Multiplication

5 6 7 8 9 10 11 12
0

1

2

3

4
CArL
GiNaC
CoCoA

(c) Division

10 11 12 13 14 15 16 17
0

0.5

1

1.5

2

CArL
GiNaC
CoCoA

(d) Pseudo-remainder

8 9 10 11 12 13 14
0

0.2

0.4

0.6

CArL
GiNaC

(e) Resultant

4 5 6 7 8 9
0

2

4

6

8

10

12
CArL
GiNaC

(f) Substitution

5 6 7 8 9 10
0

0.2

0.4

0.6

0.8
CArL
GiNaC

5.2 SMT Solving

Based on the finding that at least our fundamental polynomial procedures are
reasonably fast, we want to investigate whether SMT-RAT is competitive with
other state-of-the-art solvers. Past publications have shown that SMT-RAT usu-
ally performs pretty good, in particular on nonlinear real arithmetic [TVKO17,
CKJ+15] and nonlinear integer arithmetic [KCÁ16, Jov17].

Three methods we have recently worked on are the CADModule, STropModule
and our version of MCSAT-style solving. All three of them are targeted towards
nonlinear real arithmetic and we show an overview about the current status
in Figure 3 on the SMT-LIB [BFT16] QF NRA benchmark set, which contains
11354 problem instances from 10 different applications. The table shows the
number of instances that could be solved (as sat or unsat) and those that
could not be solved due to time or memory limits (as resout), in our case 60
seconds and 4 GB. The STropModule can not be applied to certain problems
which is shown as unknown.

For the first solver the STropModule is used as the sole theory solver, while it
can use other theory modules as backends in the second configuration, namely
the ICPModule, VSModule and CADModule. As for the CADModule, we analyzed



17

Figure 3: Experimental SMT solving results for different strategies on QF NRA

sat unsat solved unknown resout

STropModule 1372 2605 3977 5620 1757

STropModule + Backends 4260 4289 8549 – 2805

CADModule naive 2872 2699 5571 – 5783

CADModule A 4263 3873 8136 – 3218

CADModule B 4271 3803 8074 – 3280

MCSATModule 4297 4455 8752 – 2602

the impact of exploiting incrementality and different heuristics. CADModule

naive uses no incrementality while CADModule A and CADModule B only differ
in the order used for projecting polynomials. Using the exact same basic data
structures as the CAD from CADModule, the MCSATModule implements a vari-
ant of the NLSAT approach. Note that these are preliminary results and none
of the solvers uses our preprocessing techniques yet because we currently focus
on these methods on their own. As a rough comparison, the leading solvers
solved almost 9950 of the QF NRA benchmarks at last year’s SMT competition
[SC217], though in 20 minutes instead of 60 seconds.

6 Conclusion

The implementation of formal approaches to handle arithmetic problems is
highly challenging and extremely time consuming. In this paper we presented
our CArL library for arithmetic computations, whose development required a
serious effort. We also presented the latest version of SMT-RAT, whose devel-
opment started in 2009. It required six years of work till we were able to
participate in the SMT competition in 2015 the first time. Since then, our
solver was enriched by further important modules like MCSAT-support based
on the CAD method and a module for the subtropical satisfiability. All this
work resulted in free and open-source software libraries that can be used not
only in SMT-RAT but also in other software projects. Further optimizations like
reduced projection in the CAD for equality constraints and further modules
like MCSAT support based on the virtual substitution method are currently
being implemented and will hopefully further strengthen applicability and ef-
ficiency.



18

Our hope is that other research groups can make use of SMT-RAT for their
own research in their own tools. We have seen time and time again that SMT
solvers are used as black-boxes and thus researchers cannot understand or
modify the inner workings of the solver in question. We want to provide the
opportunity to change that and make the customization and extension of a
reasonably good solver for a specific class of problems accessible to non-experts
that are so far forced to use a monolithic black-box solver.

References

[AB10] John Abbott and Anna Maria Bigatti, CoCoALib: A C++ library
for computations in commutative algebra ... and beyond, Proc. of
ICMS’10, LNCS, vol. 6327, Springer, 2010, pp. 73–76. 3, 8

[AGWC10] Aws Albarghouthi, Arie Gurfinkel, Ou Wei, and Marsha Chechik,
Abstract analysis of symbolic executions, Proc. of CAV’10, LNCS,
vol. 6174, Springer, 2010, pp. 495–510. 8

[ÁNK17] Erika Ábrahám, Jasper Nalbach, and Gereon Kremer, Embedding
the virtual substitution method in the model constructing satisfi-
ability calculus framework, Proc. of SC-square’17, CEUR Work-
shop Proceedings, vol. 1974, CEUR-WS.org, 2017. 13

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and
Cesare Tinelli, CVC4, Proc. of CAV’11, LNCS, vol. 6806,
Springer, 2011, pp. 171–177. 4, 10

[BdODF09] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe,
and Pascal Fontaine, veriT: An open, trustable and efficient
SMT-solver, Proc. of CADE-22, LNCS, vol. 5663, Springer, 2009,
pp. 151–156. 4, 10

[BFK02] Christian Bauer, Alexander Frink, and Richard Kreckel, Introduc-
tion to the GiNaC framework for symbolic computation within the
C++ programming language, Journal of Symbolic Computation
33 (2002), no. 1, 1–12. 3, 8

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli, The Satisfi-
ability Modulo Theories Library (SMT-LIB), www.SMT-LIB.org,
2016. 16

[BK15] Christopher W Brown and Marek Košta, Constructing a single
cell in cylindrical algebraic decomposition, Journal of Symbolic
Computation 70 (2015), 14–48. 13



19

[Buc02] Bruno Buchberger, Gröbner bases: Applications, The Con-
cise Handbook of Algebra, Kluwer Academic Publishers, 2002,
pp. 265–268. 8

[BW16] Martin Bromberger and Christoph Weidenbach, Fast cube tests
for LIA constraint solving, Proc. of IJCAR’16, Springer, 2016,
pp. 116–132. 11

[CGSS13] Alessandro Cimatti, Alberto Griggio, BastiaanJoost Schaafsma,
and Roberto Sebastiani, The MathSAT5 SMT solver, Proc. of
TACAS’13, LNCS, vol. 7795, Springer, 2013, pp. 93–107. 4

[CHJL04] Peng-Sheng Chen, Yuan-Shin Hwang, Roy Dz-Ching Ju, and
Jenq-Kuen Lee, Interprocedural probabilistic pointer analysis,
IEEE Trans. Parallel Distrib. Syst. 15 (2004), no. 10, 893–907. 8

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan
Schupp, and Erika Ábrahám, SMT-RAT: An open source C++
toolbox for strategic and parallel SMT solving, Proc. of SAT’15,
LNCS, vol. 9340, Springer, 2015, pp. 360–368. 2, 3, 4, 11, 16

[CLJA12] Florian Corzilius, Ulrich Loup, Sebastian Junges, and Erika
Ábrahám, SMT-RAT: An SMT-compliant nonlinear real arith-
metic toolbox, Proc. of SAT’12, LNCS, vol. 7317, Springer, 2012,
pp. 442–448. 2, 3

[Col75] George E. Collins, Quantifier elimination for real closed fields by
cylindrical algebraic decomposition, Automata Theory and Formal
Languages, LNCS, vol. 33, Springer, 1975, pp. 134–183. 6, 8

[Cor11] Florian Corzilius, Virtual substitution in SMT solving, Diploma
thesis, RWTH Aachen University, 2011. 10

[Cor16] Florian Corzilius, Integrating virtual substitution into strategic
SMT solving, Ph.D. thesis, RWTH Aachen University, 2016. 11

[Dan63] George B. Dantzig, Linear programming and extensions, Prince-
ton University Press, 1963. 6

[DdM06] Bruno Dutertre and Leonardo M. de Moura, A fast linear-
arithmetic solver for DPLL(T), Proc. of CAV’06, LNCS, vol.
4144, Springer, 2006, pp. 81–94. 11

[dMB08] Leonardo de Moura and N. Bjørner, Z3: An efficient SMT solver,
Proc. of TACAS’08, LNCS, vol. 4963, Springer, 2008, pp. 337–
340. 4, 10

[dMJ13] Leonardo Mendonça de Moura and Dejan Jovanovic, A model-
constructing satisfiability calculus, Proc. of VMCAI’13, LNCS,
vol. 7737, Springer, 2013, pp. 1–12. 5, 12

[DP60] Martin Davis and Hilary Putnam, A computing procedure for



20

quantification theory, Journal of the ACM 7 (1960), no. 3, 201–
215. 4

[Dut14] Bruno Dutertre, Yices 2.2, Proc. of CAV’14, LNCS, vol. 8559,
Springer, 2014, pp. 737–744. 4, 10

[ES04] Niklas Eén and Niklas Sörensson, An extensible SAT-solver, Proc.
of SAT’03, LNCS, vol. 2919, Springer, 2004, pp. 502–518. 11

[FGM+07] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-
Kamp, René Thiemann, and Harald Zankl, SAT solving for termi-
nation analysis with polynomial interpretations, Proc. of SAT’07,
Springer, 2007, pp. 340–354. 11

[FOSV17] Pascal Fontaine, Mizuhito Ogawa, Thomas Sturm, and
Xuan Tung Vu, Subtropical satisfiability, Proc. of FroCoS’17,
Springer, 2017, pp. 189–206. 7, 12

[GBE+14] Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn,
Carsten Fuhs, Carsten Otto, Martin Plücker, Peter Schneider-
Kamp, Thomas Ströder, Steffi Swiderski, and René Thiemann,
Proving termination of programs automatically with AProVE,
Proc. of IJCAR’14, LNAI, vol. 8562, Springer, 2014, pp. 184–191.
4

[GCL92] Keith O. Geddes, Stephen R. Czapor, and George Labahn, Algo-
rithms for computer algebra, Kluwer Academic Publishers, 1992.
2

[GGI+10] Sicun Gao, Malay Ganai, Franjo Ivančić, Aarti Gupta, Sriram
Sankaranarayanan, and Edmund M. Clarke, Integrating ICP and
LRA solvers for deciding nonlinear real arithmetic problems,
Proc. of FMCAD’10, IEEE, 2010, pp. 81–90. 6

[Gro17] Marta Grobelna, SAT-modulo-theories solving for pseudo-Boolean
constraints, Bachelor’s Thesis, RWTH Aachen University, 2017.
10, 11

[Hae17] Rebecca Haehn, Using equational constraints in an incremental
CAD projection, Master’s thesis, RWTH Aachen University, 2017.
10

[Hen17] Wanja Hentze, Infeasible subsets for nonlinear SMT, Bachelor’s
Thesis, RWTH Aachen University, 2017. 10

[HHWZ10] Ernst M. Hahn, Holger Hermanns, Björn Wachter, and Lijun
Zhang, PARAM: A model checker for parametric Markov models,
Proc. of CAV’10, LNCS, vol. 6174, Springer, 2010, pp. 660–664.
8

[HR97] S. Herbort and D. Ratz, Improving the efficiency of a nonlinear-



21

system-solver using a componentwise Newton method, Tech. Re-
port 2/1997, Inst. für Angewandte Mathematik, University of
Karlsruhe, 1997. 6

[JdM12] Dejan Jovanović and Leonardo de Moura, Solving non-linear
arithmetic, Proc. of IJCAR’12, LNAI, vol. 7364, Springer, 2012,
pp. 339–354. 12

[JLCÁ13] Sebastian Junges, Ulrich Loup, Florian Corzilius, and Erika
Ábrahám, On Gröbner bases in the context of satisfiability-
modulo-theories solving over the real numbers, Proc. of CAI’13,
LNCS, vol. 8080, Springer, 2013, pp. 186–198. 11

[Jov17] Dejan Jovanović, Solving nonlinear integer arithmetic with MC-
SAT, Proc. of VMCAI’17, Springer, 2017, pp. 330–346. 16

[Jun12] Sebastian Junges, On Gröbner bases in SMT-compliant decision
procedures, Bachelor’s Thesis, RWTH Aachen University, 2012.
10

[KCÁ16] Gereon Kremer, Florian Corzilius, and Erika Ábrahám, A gen-
eralised branch-and-bound approach and its application in SAT
modulo nonlinear integer arithmetic, Proc. of CASC’16, LNCS,
vol. 9890, Springer, 2016, pp. 315–335. 7, 11, 16

[Kre13] Gereon Kremer, Isolating real roots using adaptable-precision in-
terval arithmetic, Master’s thesis, RWTH Aachen University,
2013. 10

[Krü15] Andreas Krüger, Bitvectors in SMT-RAT and their application
to integer arithmetics, Master’s thesis, RWTH Aachen University,
2015. 10, 11

[KVO14] To Van Khanh, Xuan-Tung Vu, and Mizuhito Ogawa, raSAT:
SMT for polynomial inequality, Proc. of SMT’14, 2014, p. 67. 4

[MSS99] João P. Marques-Silva and Karem A. Sakallah, Grasp: A search
algorithm for propositional satisfiability, IEEE Transactions on
Computers 48 (1999), 506–521. 4

[Nal17] Jasper Nalbach, Embedding the virtual substitution in the MCSAT
framework, Bachelor’s Thesis, RWTH Aachen University, 2017. 10

[Net15] Lukas Netz, Using Horner schemes to improve the efficiency and
precision of interval constraint propagation, Bachelor’s Thesis,
RWTH Aachen University, 2015. 10

[Neu15] Lukas Neuberger, Generation of infeasible subsets in less-lazy
SMT-solving for the theory of uninterpreted functions, Bachelor’s
Thesis, RWTH Aachen University, 2015. 10

[Red12] Joachim Redies, An extension of the GiNaCRA library for the



22

cylindrical algebraic decomposition, Bachelor’s Thesis, RWTH
Aachen University, 2012. 10

[SC217] SMT-COMP 2017 result summary,
http://smtcomp.sourceforge.net/2017/results-toc.shtml,
2017. 17

[Sch13] Stefan Schupp, Interval constraint propagation in SMT compliant
decision procedures, Master’s thesis, RWTH Aachen University,
2013. 10, 11

[Scu12] Dennis Scully, Preprocessing for solving non-linear real-arithmetic
formulas, Bachelor’s Thesis, RWTH Aachen University, 2012. 10

[Tse83] G. S. Tseitin, On the complexity of derivation in propositional
calculus, Automation of Reasoning, Springer, 1983, pp. 466–483.
4

[TVKO17] Vu Xuan Tung, To Van Khanh, and Mizuhito Ogawa, raSAT:
An SMT solver for polynomial constraints, Formal Methods in
System Design 51 (2017), no. 3, 462–499. 10, 16

[Vie16] Tarik Viehmann, Projection operators for the CAD, Bachelor’s
Thesis, RWTH Aachen University, 2016. 10

[VKA17] Tarik Viehmann, Gereon Kremer, and Erika Ábrahám, Com-
paring different projection operators in the cylindrical algebraic
decomposition for SMT solving, Proc. of SC-square’17, CEUR
Workshop Proceedings, vol. 1974, CEUR-WS.org, 2017. 11

[Wei97] Volker Weispfenning, Quantifier elimination for real algebra - the
quadratic case and beyond, Appl. Algebra Eng. Commun. Com-
put. 8 (1997), no. 2, 85–101. 6

[Win16] Tobias Winkler, Using Thom’s lemma for real algebraic numbers
in the CAD, Bachelor’s Thesis, RWTH Aachen University, 2016.
10

http://smtcomp.sourceforge.net/2017/results-toc.shtml

	1 Introduction
	2 Preliminaries
	3 CArL
	4 SMT-RAT
	4.1 Previous SMT-RAT Solver Modules
	4.2 New Modules
	4.3 Strategic Combination of Solver Modules

	5 Experimental Results
	5.1 Computations with Polynomials
	5.2 SMT Solving

	6 Conclusion

