
On the proof complexity of MCSAT

Gereon Kremer
RWTH Aachen University

gereon.kremer@cs.rwth-aachen.de

Erika Ábrahám
RWTH Aachen University

eab@cs.rwth-aachen.de
Vijay Ganesh

University of Waterloo
vijay.ganesh@uwaterloo.ca

Abstract

Satisfiability Modulo Theories (SMT) and SAT solvers are critical com-
ponents in many formal software tools, primarily due to the fact that
they are able to easily solve logical problem instances with millions of
variables and clauses. This efficiency of solvers is in surprising contrast
to the traditional complexity theory position that the problems that
these solvers address are believed to be hard in the worst case. In an
attempt to resolve this apparent discrepancy between theory and prac-
tice, theorists have proposed the study of these solvers as proof systems
that would enable establishing appropriate lower and upper bounds on
their complexity. For example, in recent years it has been shown that
(idealized models of) SAT solvers are polynomially equivalent to the
general resolution proof system for propositional logic, and SMT solvers
that use the CDCL(T) architecture are polynomially equivalent to the
Res∗(T) proof system.

In this paper, we extend this program to the MCSAT approach for
SMT solving by showing that the MCSAT architecture is polynomi-
ally equivalent to the Res∗(T) proof system. Thus, we establish an
equivalence between CDCL(T) and MCSAT from a proof-complexity
theoretic point of view. This is a first and essential step towards a
richer theory that may help (parametrically) characterize the kinds of
formulas for which MCSAT-based SMT solvers can perform well.

1 Introduction

In this work we are interested in proof systems to decide the satisfiability of (quantifier-free first-order logic)
formulas. Well-known proof systems include variants of the resolution proof system for propositional logic, but
also for first-order logic as presented in [RKG]. An interesting measure to compare proof systems is their proof
complexity : if we can show that in a proof system we can generate shorter proofs (with less proof steps) than in
another, we consider the former proof system more powerful.

One particular problem that concerns quantifier-free first-order logic formulas is to determine their satisfi-
ability. Answering this question (at least for certain theories) has spawned an active field of research called

Copyright © by the paper’s authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

satisfiability modulo theories (SMT) solving [BHvMW09, KS08]. The predominant approach is called CDCL(T)
and works by combining a solver for propositional logic (a SAT solver) with a solver that checks a set of theory
constraints for consistency (a theory solver).

A significantly different solving technique called MCSAT was presented in [JdM, dMJ] which provides a
significantly tighter integration of the Boolean and the theory reasoning. This solver performs extremely well in
practice, at least for “hard” theories like non-linear real arithmetic, thus naturally raising the question whether
this MCSAT implementation only happens to include better heuristics, or whether MCSAT itself has some more
fundamental advantage over CDCL(T).

We tackle this question from the perspective of proof complexity, allowing us to abstract from certain practical
aspects very naturally, for example the impact of heuristics. We can understand both CDCL(T) and MCSAT as
proof systems [NOT06, dMJ]. The proof complexity of CDCL(T) was found in [RKG] to be equivalent to the
Res∗(T) proof system. In this paper, we show that also the MCSAT architecture is polynomially equivalent to
the Res∗(T) proof system. Thus, we establish an equivalence between CDCL(T) and MCSAT from a complexity-
theoretic view.

It is important to realize, that there is a subtle but important difference between what we call DPLL –
referring to the original DPLL method from [DLL62] – and the version extended with clause learning – proposed
in [MS] – that we now call CDCL. Compared to CDCL(T) (and Res∗(T)), DPLL(T) is weaker in terms of proof
complexity and we only argue about CDCL(T) throughout this paper.

2 Preliminaries

2.1 Proof Systems

We assume the reader to be familiar with deductive proof systems and give in the following just a short intro-
duction to notation. For readability, in the following we will use conditional proof rules of the form

PR:
A1 . . . An

C
if
{

S1, . . . , Sm

to form proof systems. Such a rule with name PR allows to derive the consequent C from the antecedents
A1, . . . , An and some side conditions S1, . . . , Sm. We will typically describe some state in a single antecedent A
and some conditions on this state in S1, . . . , Sm. Note that the above conditional proof rule is equivalent to one
without side-condition but with the antecedents A1, . . . , An, S1, . . . , Sm.

A (deductive) proof system is a set of such (conditional) proof rules. By a derivability statement Γ ` C we
denote that we can prove C from a set Γ of antecedents (and side conditions), i.e., that C is derivable from Γ
by finitely many proof rule applications. By Γ |= C we denote that Γ assures the truth of C (with respect to
an underlying semantics). Qualitative properties of proof systems include soundness (if Γ ` C then Γ |= C)
and completeness (if Γ |= C then Γ ` C). All the proof systems that we consider in this paper are sound and
complete; we refer to the respective references for details.

The length of a proof in a proof system is the number of proof rule applications used in it; a proof is shorter
then another one if its length is smaller. The proof complexity for Γ ` C is the length of the shortest proof that
derives C from Γ. Our aim in this paper is to compare for certain classes of derivability statements their proof
complexities in different proof systems.

Assume two proof systems P1 and P2, and a metric to measure the size of derivability statements that are true
in both systems. We say that P1 is more powerful than P2 on a set of such statements if the proof complexity
grows (at most) polynomially with the statement (input) size in P1 but exponentially in P2. We call P1 and P2

comparable if one of them is more powerful than the other on all such classes, and incomparable otherwise. We
refer to [RKG] for a discussion of existing proof systems and their relations in terms of proof complexity.

2.2 Model-constructing Satisfiability Calculus (MCSAT)

In the following we recall the MCSAT proof system for the satisfiability check of quantifier-free first-order logic
formulas as defined in [dMJ]. Following [dMJ], we present the proof rules in three categories: Boolean reasoning
(fig. 1), conflict analysis (fig. 2) and theory reasoning (fig. 3). The Boolean reasoning and conflict analysis parts
essentially constitute a regular CDCL-style SAT solver while the theory reasoning part enhances the proof system
to allow for SMT-style theory computations.

Decide:
〈M, C〉
〈JM,LK, C〉

if

{
L ∈ Basis
value(L,M) = undef

Propagate:
〈M, C〉

〈JM,C → LK, C〉
if

{
C = (L1 ∨ · · · ∨ Ln ∨ L) ∈ C,
∀i. value(Li,M) = false, value(L,M) = undef

Conflict:
〈M, C〉

〈M, C〉 C
if

{
C = (L1 ∨ · · · ∨ Ln) ∈ C,
∀i. value(Li,M) = false

Sat:
〈M, C〉
SAT

if

{
M is complete,
∀C = (L1 ∨ . . . ∨ Ln) ∈ C.∃i. value(Li,M) = true

Forget:
〈M, C〉

〈M, C \ {C}〉
if
{
C ∈ C is a learned clause

Restart:
〈M, C〉 C

〈JK, C〉
if
{
true

Figure 1: The MCSAT proof rules I: Boolean reasoning

The only modification to [dMJ] is the addition of the Restart rule (fig. 1), which is sound and also does not
introduce non-termination as long as we ensure that it is applied with increasing periodicity [NOT06]. Restarts
are a standard technique both in CDCL-style SAT solving and in SMT solving, but such a rule was not included
in the original MCSAT proof system. However, we will need this rule for the proof complexity results in the next
section.

Due to space restrictions, in the following we discuss the rules only briefly and refer to [dMJ] for more detailed
explanations.

The proof system works on states of the form 〈M, C〉 consisting of a trail M and a set C of clauses whose
satisfaction we are interested in, where the literals of the clauses are constraints from a given theory T . The
trail is a list of Boolean decisions, theory decisions, Boolean propagations and theory propagations. Decisions
represent exploration by enumeration: a Boolean decision L assigns the Boolean value true to the literal L (fig. 1,
rule Decide; the Basis set and the value function will be explained a bit later), whereas a theory decision x 7→ αx

assigns the theory value αx to the theory variable x (fig. 3, rule T-Decide; consistency of a trail is explained
below). A Boolean propagation C → L states that the satisfaction of C under previous decisions is possible
only if L is true with the reason being the clause C (fig. 1, rule Propagate). Analogously, a theory propagation
E → L states an implication based on a lemma, i.e. a tautology in the theory (T-Propagate, fig. 3). We write
JM1, . . . ,MkK to explicitly denote individual elements of the trail, and we call a trail complete if it assigns a
Boolean value to each variable or its negation (either by Boolean decision or propagation) as well as a theory
value to each theory variable. Satisfiability of a CNF formula can be proven by deriving the SAT state, based on
a complete trail that satisfies each clause (fig. 1, rule Sat).

For theory variables x, if there is some theory value αx such that x 7→ αx is in the trail M then the value
value(x,M) of a theory variable x in trail M is αx, and undef otherwise.

A literal L, which is either a theory constraint c or the negation ¬c of a constraint c, can be evaluated by
two semantics: c or ¬c can enter the trail by Boolean decision or propagation, but also the theory variables
in c can be assigned a value from the theory domain. The proof system argues in both the Boolean and the
theory domain concurrently, but it assures that they stay consistent, meaning that the Boolean and the theory
evaluation of a constraint never contradict. Thus the value value(L,M) of a literal L in a trail M is true if L
is decided or propagated in M , or if L evaluates to true when we substitute the theory values from M in L; it
is false if ¬L is decided or propagated in M , or if L evaluates to false under the theory assignments; and undef
otherwise. We call a consistent trail M feasible if the trail’s theory variable assignments can be extended to
satisfy all clauses C ∈ C with value(C,M) = true; by infeasible(M) we denote that M is not feasible.

From a search state 〈M, C〉 we enter the conflict state 〈M, C〉 C when a violated conflict clause (i.e., a
clause whose literals all evaluate to false under the current trail M) is detected (fig. 1, rule Conflict), or
the conflict state 〈M, C〉 E when the trail is infeasible and E is a theory lemma explaining this fact. The

Resolve:
〈JM,D → LK, C〉 C

〈M, C〉 R
if

{
¬L ∈ C,
R = resolve(C,D,L)

Consume1:
〈JM,D → LK, C〉 C

〈M, C〉 C
if
{
¬L 6∈ C

Consume2:
〈JM,LK, C〉 C

〈M, C〉 C
if
{
¬L 6∈ C

Backjump:
〈JM,NK, C〉 C

〈JM,C → LK, C〉
if

C = (L1 ∨ · · · ∨ Ln ∨ L),
∀i. value(Li,M) = false,
value(L,M) = undef,
N starts with a decision

Unsat:
〈M, C〉 false

UNSAT
if
{

true

Learn:
〈M, C〉 C

〈M, C ∪ {C}〉 C
if
{
C 6∈ C

Figure 2: The MCSAT proof rules II: conflict analysis

rules Resolve, Consume1, Consume2, T-Consume, Backjump, T-Backjump-Decide and Learn allow to implement
conflict resolution in the style of conflict-driven clause learning (CDCL), where resolve(C,D,L) denotes the result
of the (propositional) resolution applied to the clauses C and D with respect to the literal L. Unsatisfiability of
a CNF formula can be proven by deriving the UNSAT state from the empty trail, based on the derivation of the
empty (false) clause (fig. 2, rule Unsat).

The explain function explains theory-specific propagations and infeasible states. The proof systems assumes
the existence of a finite set Basis of theory constraints such that all literals from all clauses, especially those
returned by the explain function, are contained in it. The finiteness provides a nice termination argument as
only finitely many (different) clauses exist. Also explanations can be learned and forgotten (rules Learn in fig. 2
and Forget in fig. 1).

2.3 The Proof Systems Res(T) and Res∗(T)

Our reference proof system is (one of the variants of) the resolution proof system. Two resolution proof systems
for first-order logic with some theory T called Res(T) and Res∗(T) are discussed in [RKG]. They enhance the
traditional resolution proof system for propositional logic by a proof rule that allows for the introduction of new
clauses that state tautologies from the theory. While Res∗(T) allows for strong theory derivation which may also
introduce new literals (theory constraints), Res(T) is restricted to (regular) theory derivation that allows only
literals that occur in the formula already.

Introducing new literals can make a significant difference for certain problem classes as discussed in [RKG].
As the MCSAT proof system may as well introduce new literals – the explain method makes heavy use of this
in many cases – we use Res∗(T) for the following comparison, consisting of the Resolution rule and the Strong

Theory Derivation rule.
Note that these proof systems lack dedicated final states – like SAT and UNSAT from MCSAT. We implicitly

derive UNSAT if Resolution produces the empty clause and SAT if no new clauses can be derived (with Resolution

or (Regular) Theory Derivation), thus essentially when a fixed point is reached. Note that this proof system
does not (directly) allow to extract a satisfying assignment.

3 Content

We now state and afterwards prove our core theorem.

Theorem 1. The Res∗(T) proof system and the MCSAT proof system are equivalent with respect to their proof
complexity on first-order logic with any theory.

T-Propagate:
〈M, C〉

〈JM,E → LK, C〉
if

L ∈ Basis,
value(L,M) = undef,
infeasible(JM,¬LK),
E = explain(JM,¬LK)

T-Decide:
〈M, C〉

〈JM,x 7→ αxK, C〉
if

 x is a theory variable in C,
value(x,M) = undef,
JM,x 7→ αxK is consistent

T-Conflict:
〈M, C〉

〈M, C〉 E
if

{
infeasible(M),
E = explain(M)

T-Consume:
〈JM,x 7→ αxK, C〉 C

〈M, C〉 C
if
{

value(C,M) = false

T-Backjump-Decide:
〈JM,x 7→ αx, NK, C〉 C

〈JM,LK, C〉
if

 C = (L1 ∨ · · · ∨ Ln ∨ L),
∃i. value(Li,M) = undef,
value(L,M) = undef

Figure 3: The MCSAT proof rules III: theory reasoning

Resolution:
(C ∨ l) (D ∨ ¬l)

(C ∨D)
if
{

true

(Regular) Theory Derivation:
ϕ

ϕ ∧ C
if

{
T |= C,
l ∈ ϕ for all l ∈ C

Strong Theory Derivation:
ϕ

ϕ ∧ C
if
{
T |= C

Figure 4: The Res(T) and Res∗(T) proof systems

We give our proof in two steps: first we show that MCSAT can simulate Res∗(T) – meaning that for any
Res∗(T) proof MCSAT can construct a proof that is at most polynomially longer – and finally show the reverse
statement, that Res∗(T) can simulate MCSAT. What we show is actually a slightly stronger statement: instead of
constructing some proof (that is at most polynomially longer) we construct a logically equivalent proof, yielding
something we could describe as algorithmic equivalency. Of course these proofs will not be syntactically identical,
but they describe logically equivalent proof steps.

3.1 MCSAT simulates Res∗(T)

To show that MCSAT can simulate Res∗(T), we need to show that MCSAT can simulate both the Resolution

rule and the Strong Theory Derivation rule with at most polynomial overhead.

Resolution.

Assuming that our set of clauses C contains the clauses (C ∨ L) and (D ∨ ¬L), we need to add (C ∨ D) to C.
Let us first handle a special case. Assume that we have a literal in C whose negation is in D. In this case
(C ∨D) ≡ true and there is nothing to do. Similarly, if (C ∨D) ∈ C then we do not need to add it. From here
on we assume that (C ∨D) 6≡ true and (C ∨D) 6∈ C. Starting from an empty trail, the clause (C ∨D) can be
learned using the MCSAT proof rules as follows:

First we apply the Decide rule for all literals L1, . . . , Ln of C and D. Note that we start with the empty trail,
thus initially all literals are undefined and can therefore be decided. Note furthermore that we assumed a finite
Basis set that contains all literals from all clauses in C.

Decide:
〈M, C〉

〈JM,¬LiK, C〉
if

{
Li ∈ Basis,
value(Li,M) = undef

Now, the trail evaluates both C and D to false and we use the Propagate rule with (C ∨ L) to propagate L.

Propagate:
〈M, C〉

〈JM, (C ∨ L)→ LK, C〉
if

{
value(C,M) = false,
value(L,M) = undef

Having value(L,M) = true now, (D ∨ ¬L) is conflicting and we apply the Conflict rule.

Conflict:
〈JM, (C ∨ L)→ LK, C〉

〈JM, (C ∨ L)→ LK, C〉 (D ∨ ¬L)
if

{
(D ∨ ¬L) ∈ C,
value(D ∨ ¬L) = false

We perform resolution using the Resolve rule to obtain (C ∨D).

Resolve:
〈JM, (C∨L)→LK, C〉 (D∨¬L)

〈M, C〉 (C∨D)
if

 L ∈ (C∨L),
(C∨D) = resolve(

(C∨L), (D∨¬L), L)

To add the conflict clause to the set of clauses C we use the Learn rule.

Learn:
〈M, C〉 (C ∨D)

〈M, C ∪ {(C ∨D)}〉 (C ∨D)
if
{

(C ∨D) 6∈ C

We have achieved our goal of adding (C ∨D) to C and return to the initial state with the Restart rule.

Restart:
〈M, C ∪ {(C ∨D)}〉 (C ∨D)

〈JK, C ∪ {(C ∨D)}〉
if
{

true

We observe that this sequence of proof rules is polynomial in the size of the clause (C∨D) – we need |C|+|D|+5
rule applications – and we return to the same initial state afterwards, except for the added clause (C ∨D). Note
that we did not use any theory reasoning in the MCSAT rule applications and thus pay no hidden costs (as we
later discuss in section 4).

Strong Theory Derivation.

We need to create some arbitrary clause C which is valid in the theory, that is T |= C. Similar to the previous
simulation, we assume that C 6≡ true and C 6∈ C as there is nothing to do in these cases.

Our main hurdle is that MCSAT does not allow for learning arbitrary clauses but only the current conflict
clause. We therefore have to construct an (artificial) conflict that yields the desired clause. We assume that
our finite basis Basis includes all literals that ever occur in the Res∗(T) proof. We can construct and learn an
arbitrary (valid) clause C using the MCSAT proof rules as follows:

Starting again from the empty trail, we use Decide repeatedly to add ¬L for every L ∈ C to the trail. Note that
Decide allows to decide any literal from Basis, independent on whether they appear in the input formula.

Decide:
〈M, C〉

〈JM,¬LK, C〉
if

{
L ∈ Basis
value(L,M) = undef

We know that C is a valid clause (T |= C) but we have value(C,M) = false due to the previous decisions. Thus
M is infeasible and we can apply the T-Conflict rule with E = C. Recall that a trail is infeasible if it is
inconsistent in the theory – which is the case here as M implies ¬C but T |= C.

T-Conflict:
〈M, C〉

〈M, C〉 C
if

{
infeasible(M),
C = explain(M)

Now we can learn the desired clause C using the Learn rule.

Learn:
〈M, C〉 C

〈M, C ∪ {C}〉 C
if
{
C 6∈ C

Finally we return to the initial state with the Restart rule.

Restart:
〈M, C ∪ {C}〉 C

〈JK, C ∪ {C}〉
if
{

true

We observe that we need |C| + 3 proof rule applications to learn an arbitrary clause (that is neither true nor
already present in C) and return to the initial state.

3.1.1 Practicability

We have seen that the MCSAT framework assumes that it can decide the feasibility of the trail, though (depending
on the theory) deciding (in)feasibility might be computationally hard or even undecidable. While theorists might
simply assume an “oracle” we now examine how actual implementations deal with this. Practically relevant
implementations of infeasible(M) for non-linear real arithmetic are incomplete. The respective papers suggest
to apply the T-Conflict rule only if infeasibility can be detected by checking the consistency of univariate
constraints. One might even (reasonably) argue that this restriction is not a technical one, but is a fundamental
idea in MCSAT that allows the theory exploration in the first place – a complete implementation of infeasible(M)
would essentially prevent the theory exploration from happening (like in our simulation). Simulating the Strong

Theory Derivation rule with an incomplete implementation of infeasible(M) is a bit technical but doable,
however, we need to consider also the length of the resulting proof.

The basic idea of the theory exploration in MCSAT is to guess a partial theory assignment (via T-Decide)
until its infeasibility can be detected, generalize the unsatisfying assignment to an unsatisfying region around it
(via T-Conflict) and exclude it (via Learn) from the further search and backtrack the theory assignment. This
usually happens multiple times for a certain variable until the whole space is excluded for this variable and we
have to change the assignment of the previously assigned theory variable.

In the above scenario the trail is already unsatisfiable due to the Boolean assignments, and we eventually
discover this fact after exploring a certain number of regions and come up with a reason for the conflict. Note
that the number of rule applications needed in this case grows with the number of regions we need to exclude
and the complexity of this process highly depends on the background theory. For the question of completeness
we refer to [dMJ] while we observe that for non-linear arithmetic, considering the number of cells a cylindrical
algebraic decomposition may have to consider, the number of regions may easily grow exponentially (e.g. in the
number of theory variables).

This unfortunately conflicts with our hope to find a polynomial reduction. However, this was to be expected: a
major aspect of MCSAT is that certain parts of the theory reasoning are moved into the core proof system. Thus
we should not be surprised if our core proof system exhibits bad asymptotic behavior if we consider a hard theory,
while the proof system we compare it to completely hides the theory reasoning from the complexity measure.
Note that theory reasoning for non-linear arithmetic based on cylindrical algebraic decomposition, whether it is
infeasible(M) in MCSAT or the question whether T |= C in Res∗(T) may incur a doubly exponential runtime
cost. We discuss how these two theory questions relate in section 4.

We thus conclude that the presented reduction is polynomial for the MCSAT proof system, but may not be
for an actual MCSAT implementation. The additional complexity is however not new but only becomes visible
as the MCSAT proof system makes the theory reasoning explicit while Res∗(T) does not.

3.2 Res∗(T) simulates MCSAT

We observe that MCSAT has three separate places where clauses can “exist”, namely the set of clauses C, the
trail M and the current conflict clause C. When simulating MCSAT with Res∗(T), we make sure that the set of
clauses that Res∗(T) operates on always includes C, clauses from M and C.

Note that Res∗(T) retains all clauses that it constructs as is not designed to forget clauses while MCSAT may
drop clauses occasionally. We note that removing clauses can bring advantages in practice, but the number of
additional clauses is linear in the number of rule applications – MCSAT needs at least one rule application to
construct a clause in the first place – and the practical overhead of additional clauses – for example due to larger
lookup tables – is polynomial.

To prove that Res∗(T) simulates MCSAT, it suffices to show that all clauses that ever occur in the MCSAT
derivation can also be constructed using the Res∗(T) proof rules. In case of unsatisfiability Res∗(T) deduces the
empty clause immediately before the application of the Unsat rule in MCSAT while any other termination of
the Res∗(T) proof system indicates satisfiability. We assume that initially both proof systems start with the
same set of input clauses. We identify the rules where the MCSAT rule system constructs new clauses: Resolve,
T-Propagate and T-Conflict.

All other rules either do not manipulate any clauses (Decide, Sat, Consume1, Consume2, Unsat, T-Decide,
T-Consume, Restart), move clauses between any of the three places (Propagate, Conflict, Backjump, Learn)
or remove existing clauses from the current state (Forget, T-Backjump-Decide).

Resolve.

The Resolve rule takes the two clauses C (the current conflict clause) and D (from the trail M) and produces
the resolvent with respect to some literal L. By construction we know that Res∗(T) has both C and D available
and can thus apply the Resolution rule to produce the same resolvent.

T-Propagate and T-Conflict.

Both the T-Propagate rule and the T-Conflict rule construct a new clause E by calling the MCSAT explain
method. This method produces “a valid theory lemma” (as specified in [dMJ]), thus we have T |= E and can
obtain these clauses using the Strong Theory Derivation rule.

As we have simulated all MCSAT rules that can be used to construct new clauses, we can now take any MCSAT
proof and convert it into a Res∗(T) proof by using the presented simulations for the Resolve, T-Propagate and
T-Conflict rule and removing all other proof steps.

We have shown that MCSAT and Res∗(T) simulate each other and are thus equivalent (in terms of proof
complexity), concluding our proof for theorem 1.

4 Complexity of theory computations

One can very well argue that the length of a proof (in terms of proof steps) is not a satisfactory measure to
assess the computational complexity of performing this proof. We already see in the analysis above that we can
make proof rules arbitrarily powerful so that we can essentially prove anything with a single step. We could as
well devise a prove system that executes individual processor instructions and thus requires an insane amount
of proof steps. To compare proof systems it is thus crucial that they operate on a similar level of abstraction as
we assume every proof rule to take some fixed amount of time.

One such abstraction is that we assume that theory queries (whatever a theory query may be in detail) only
require constant effort here: one proof step for Strong Theory Derivation in Res∗(T) and one proof step for
either T-Propagate or T-Conflict in MCSAT. One may very well be worried here, as we know that theory
queries for some theories can be extremely expensive (even doubly exponential for non-linear arithmetic using
cylindrical algebraic decomposition) while all the other rules are easy to compute. This leads to two issues that
influence how meaningful the above analysis is: how often are these particular rules used and do these theory
queries have comparable computational effort?

If we use theory queries (almost) equally often in both proof systems, we can relax our assumption that all
proof rules take constant time. Instead we consider theory rules (Strong Theory Derivation, T-Propagate and
T-Conflict) and non-theory rules. We claim that all non-theory rules can be applied quickly (low polynomial
runtime) and it suffices to consider their overall number as we did above. If we can additionally show that the

theory rules have comparable computational effort in the different proof systems, this implies that the overall
effort is (complexity-wise) the same.

Recalling the above reductions, we see that both proof systems need the exact same amount of theory rules.
MCSAT needs no theory rules to simulate Resolution and a single application of T-Conflict to simulate
Strong Theory Derivation. Res∗(T) on the other hand only applies Strong Theory Derivation once to
simulate T-Conflict or T-Propagate.

What remains to analyze is the computational effort for each of these theory queries. When Res∗(T) simulates
MCSAT (as described above) it generates the same clauses that MCSAT generated: if we would have an im-
plementation for Strong Theory Derivation that would do this (significantly) more efficiently than whatever
MCSAT does in the explain and infeasible methods, we could take this method and use it in MCSAT as well.
We have also seen that MCSAT can simulate the Strong Theory Derivation rule (with a single theory call
to the infeasible method while explain is trivial as no theory assignments are present [dMJ]) and thus a more
efficient infeasible method would directly allow us to improve upon the implementation of the Strong Theory

Derivation rule. We can just assume that both proof systems may use the exact same techniques for the theory
queries and thus their computational effort is the same.

5 Impact on CDCL(T)

From the perspective of the SMT community the comparison to Res∗(T) is of course interesting, but the actual
question is how MCSAT relates to CDCL(T). Though we did not answer this specifically, we can both infer
and speculate now more substantively than before. We know from [RKG] that CDCL(T) (with strong theory
derivation) is equivalent to Res∗(T) in terms of proof complexity as well, hence transitively MCSAT and CDCL(T)
are equivalent (in terms of proof complexity).

CDCL(T) is presented as an algorithm in [RKG], but [NOT06] also (equivalently) defines CDCL(T) as a proof
system. Though we cannot claim equivalency (beyond the aspect of proof complexity) between CDCL(T) and
Res∗(T), we can very well do so between MCSAT and Res∗(T) as argued above. We conjecture that most proof
rules from CDCL(T) and MCSAT nicely align and the ideas from the reductions above should be a good start for
the remaining proof rules. Thus we believe that this work might be a first step towards a proof that establishes
equivalency between CDCL(T) and MCSAT.

Like for MCSAT the theory queries within CDCL(T) are much more specific than those from Res∗(T) and
thus we expect the issues discussed in section 4 to essentially vanish here as well. Though the theory queries
pose different questions, we know from practical implementations that the algorithms to answer them are very
similar.

6 Conclusion

We have recalled the definitions of MCSAT (from [dMJ]) and Res∗(T) (from [RKG]) and shown that they are
equivalent with respect to their proof complexity, and even equivalent in a stronger sense that we described as
algorithmically equivalent. We have discussed that though the complexity of theory queries is unknown, the fact
that we simulate every theory query individually allows us to assume that the required effort is the same in both
proof systems: if one would be (significantly) faster, we assume that the presented simulation can be used in the
other proof system as well with only polynomial overhead. Still a more thorough analysis would be important
to conduct in the future.

Finally we have discussed the importance of the presented work for the actual goal, the comparison of MCSAT
and CDCL(T). We have noted that we established equivalency (in terms of proof complexity) of MCSAT and
CDCL(T) which gives rise to the hope that they are in fact equivalent in the sense that they can (almost) directly
simulate each other using the ideas presented here. A corresponding proof is also left for future work.

References

[BHvMW09] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[dMJ] Leonardo de Moura and Dejan Jovanović. A model-constructing satisfiability calculus. In Proceed-
ings of VMCAI 2013, volume 7737 of LNCS, pages 1–12.

[JdM] Dejan Jovanović and Leonardo de Moura. Solving non-linear arithmetic. In Proceedings of IJCAR
2012, pages 339–354.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic Point of View.
Springer, 2008.

[MS] João P. Marques Silva and Karem A. Sakallah. Grasp: a new search algorithm for satisfiability. In
Proceedings of ICCAD 1996, pages 220–227.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the
ACM, 53:937–977, 2006.

[RKG] Robert Robere, Antonina Kolokolova, and Vijay Ganesh. The proof complexity of SMT solvers.
In Proceedings of CAV 2018, volume 10982 of LNCS, pages 275–293.

	Introduction
	Preliminaries
	Proof Systems
	Model-constructing Satisfiability Calculus (MCSAT)
	The Proof Systems Res(T) and Res*(T)

	Content
	MCSAT simulates Res*(T)
	Practicability

	Res*(T) simulates MCSAT

	Complexity of theory computations
	Impact on CDCL(T)
	Conclusion

