
Cylindrical Algebraic Coverings for Quantifiers

Gereon Kremer1[0000−0002−0393−5739] and Jasper Nalbach2[0000−0002−2641−1380]

1 Stanford University, Stanford, USA, gkremer@cs.stanford.edu
2 RWTH Aachen University, Aachen, Germany, nalbach@cs.rwth-aachen.de

Abstract. The cylindrical algebraic coverings method was originally proposed to decide the satisfiabil-
ity of a set of nonlinear real arithmetic constraints. We reformulate and extend the cylindrical algebraic
coverings method to allow for checking the validity of arbitrary nonlinear arithmetic formulas, adding
support for both quantifiers and arbitrary Boolean structure. Furthermore, we also propose a variant
to perform quantifier elimination on such formulas.

Keywords: Nonlinear Arithmetic · Cylindrical Algebraic Coverings · Quantifier Elimination

1 Introduction

Nonlinear real arithmetic is the first-order theory whose atoms are polynomial constraints over real variables.
We consider three fundamental problems that deal with formulas from this theory: satisfiability, validity and
quantifier elimination. Satisfiability is concerned with the existential fragment (or equivalently the quantifier-
free fragment) of this theory: given a purely existentially quantified formula (or a quantifier-free formula) it
decides whether an assignment to the formula’s variables exists such that the formula evaluates to True. In
contrast to this, validity considers fully quantified formulas and checks whether they are equivalent to True
or False. Finally, quantifier elimination deals with formulas that have both free variables (parameters) and
quantified variables, and constructs equivalent quantifier-free formula over the parameters.

The cylindrical algebraic decomposition [6] method is the only complete procedure for solving all these
questions for nonlinear real arithmetic that is used in practice, despite its doubly exponential worst-case
complexity that severely limits the scalability of the method. For the satisfiability problem of conjunctions
of constraints, motivated by the application in satisfiability modulo theories solving, the cylindrical alge-
braic coverings method [1] has been developed based on cylindrical algebraic decomposition. Although it
retains the doubly exponential complexity, its performance is significantly better in practice [1,7] while its
implementation requires only a simple bookkeeping data structure. Furthermore, it closer resembles human
reasoning and is more accessible to proof production [2,3].

Contribution. We propose a novel reformulation and extension of the cylindrical algebraic coverings method
that goes beyond the satisfiability problem of conjunctions and also allows to solve arbitrary quantified
formulas as well as quantifier elimination queries. We first consider validity where all variables are explicitly
quantified, either existentially or universally, in Section 3, and then expand to the quantifier elimination
problem in Section 4.

2 Preliminaries

We assume every formula φ to be a first-order formula over nonlinear real arithmetic with polynomial
constraints defined in variables x1, . . . , xn ∈ R. Furthermore, we expect φ to be transformed to prenex
normal form, i.e., consisting of a prefix of quantifiers and a quantifier-free formula called the matrix φ:

φ := Qk+1xk+1 · · ·Qnxn. φ(x1, . . . , xn)

If k ̸= 0, φ has free variables that are not explicitly quantified. These can be considered to be implicitly
quantified existentially, much like we do for satisfiability modulo theories queries in general. We assume that

in Section 3 and actually solve ∃x1 · · · ∃xkQk+1xk+1 · · ·Qnxn. φ(x1 . . . xn). Alternatively, these free variables
can be understood as parameters to make the input a quantifier elimination problem, as we do in Section 4.

We use standard notation for arithmetic and assume an ordering on the variables x1 ≺ · · · ≺ xn. The
highest variable occurring in a polynomial or constraint is called their main variable. For further details, we
refer to [1]. Given a (partial) sample point s ∈ Rk we denote the extension of s to (s1, . . . sk+1) ∈ Rk+1 by
s × sk+1 and the (partial) evaluation up to level k of φ or φ over s by φ[s] or φ[s], respectively: we only
substitute the sample point into constraints with main variable at most xk; i.e., under this partial evaluation
x1 · x2 > 1 does not evaluate to a truth value at x1 = 0.

We denote the constraints that occur in a formula φ by constraints(φ). To select only those with main
variable xi, we write constraintsi(φ).

Cylindrical Algebraic Coverings. We briefly present the idea behind the cylindrical algebraic coverings
method for checking the existential fragment of nonlinear real arithmetic and refer to [1] for more details.
The fundamental idea is to recursively construct a (partial) sample point and collect intervals that repre-
sent unsatisfiable regions above this sample point. When a sample point can not be extended because these
intervals form a covering of the real line in the next dimension, the covering is projected into the previous
dimension to refute the current sample point. We then backtrack and choose a different value for the sample
point in the highest dimension. Eventually, either a full sample point is constructed and we return SAT, or
an unsatisfiable covering is constructed in the first dimension and we return UNSAT. In contrast to cells from
cylindrical algebraic decomposition, intervals do not form a decomposition as they may overlap.

The algorithm starts by constructing unsatisfiable intervals for x1 based on univariate constraints and
then tries so select a value s1 for the variable x1 outside of these intervals. If such a value exists, the method
is called recursively with the partial sample point (s1). After substituting x1 = s1, the constraints with main
variable x2 become univariate and thus suitable for identifying unsatisfiable intervals for x2. This process is
continued recursively until either all constraints are satisfied (and we return SAT) or for some xi no suitable
value exists. In the latter case, the set of unsatisfiable intervals covers the whole real line and forms a
covering. This covering is generalized by projecting it to dimension i− 1. The idea is to use projection tools
borrowed from cylindrical algebraic decomposition with some improvements: as we only need to characterize
this covering and not a decomposition, only a subset of the full projection is needed. Using the current
sample point, an interval for the variable xi−1 with respect to the projection result can be computed which
is added to the set of unsatisfiable intervals for xi−1, possibly taking part in an unsatisfiable covering for
xi−1. Unless we find a full satisfying sample point we eventually obtain an unsatisfiable covering for the first
variable x1 and return UNSAT.

Algebraic Intervals. We generalize intervals (over a partial sample point) by attaching algebraic informa-
tion in the form of sets of polynomials whose order-invariance characterizes satisfiability-invariant regions
of a formula in multidimensional space. We call them algebraic intervals and represent them as a tuple
I = (Iℓ, Iu, IL, IU , IPi

, I⊥). (Iℓ, Iu) is the (numeric) interval over an (i− 1)-dimensional sample point, IL and
IU are sets of the polynomials with main variable xi which vanish at (s1, . . . , si−1, Iℓ) and (s1, . . . , si−1, Iu),
respectively, IPi

is a set of polynomials with main variable xi which should be order-invariant in the con-
structed interval and I⊥ is a set of lower-level polynomials which need to be order-invariant in the underlying
cell as well. See [1] for more details.

Implicants. An implicant ψ of a formula φ is usually understood to be a “simpler” formula that implies φ,
or formally ψ ⇒ ϕ ∧ constraints(ψ) ⊆ constraints(φ). We adapt this concept as follows. Let s ∈ Ri be
a (partial) sample point. If φ[s] = True, then ψ is an implicant of φ with respect to s if

ψ[s] = True ∧ (ψ ⇒ φ) ∧ constraints(ψ) ⊆ constraintsi(φ).

Otherwise, if φ[s] = False, then ψ is an implicant of φ with respect to s if

ψ[s] = True ∧ (ψ ⇒ ¬φ) ∧ constraints(ψ) ⊆ constraintsi(φ).

We call ψ a prime implicant of φ if constraints(ψ) is minimal among all implicants of φ.

2

Algorithm 1: user_call()
Data: Global prefix Q1x1 · · ·Qnxn and matrix φ.
Output: Either SAT or UNSAT

1 (f,O) := recurse(()) // Algorithm 2
2 return f

Algorithm 2: recurse(s)
Data: Global prefix Q1x1 · · ·Qnxn and matrix φ.
Input : Sample point s = (s1, . . . , si−1) ∈ Ri−1 such that φ[s] ̸= False.
Output: (SAT, I) or (UNSAT, I) where s× I can or can not be extended to a model for any si ∈ I. In both

cases, the algebraic information attached to I describes how s can be generalized.
1 if Qi = ∃ then return exists(s) // Algorithm 3
2 else return forall(s) // Algorithm 4

Algorithm 3: exists(s)
Data: Global prefix Q1x1 · · ·Qnxn and matrix φ.
Input : Sample point s = (s1, . . . , si−1) ∈ Ri−1 such that φ[s] ̸= False.
Output: see Algorithm 2

1 Iunsat := ∅ // [1, Algorithm 3]
2 while

⋃
I∈Iunsat

I ̸= R do
3 si := sample_outside(Iunsat)
4 if φ[s× si] = False then
5 (f,O) := (UNSAT, get_enclosing_interval(s, si)) // Algorithm 5
6 else if φ[s× si] = True then
7 (f,O) := (SAT, get_enclosing_interval(s, si)) // Algorithm 5
8 else it holds i < n
9 (f,O) := recurse(s× si) // Algorithm 2, recursive call

10 if f = SAT then
11 R := characterize_interval(s, O) // Algorithm 6
12 I := interval_from_characterization((s1, . . . , si−2), si−1, R) // [1, Algorithm 5]
13 return (SAT, I)
14 else if f = UNSAT then
15 Iunsat := Iunsat ∪ {O}

16 R := characterize_covering(s, Iunsat) // Algorithm 7
17 I := interval_from_characterization((s1, . . . , si−2), si−1, R) // [1, Algorithm 5]
18 return (UNSAT, I)

3 Quantified Problems

We first describe how the cylindrical algebraic coverings method can be adapted for problems where all
variables are quantified. Our presentation stays very close to [1], and we reuse utility methods when possible.

One of the most notable changes is the interface of the main method. In [1], get_unsat_cover always
returns a witness, either for satisfiability (a model) or for unsatisfiability (an unsatisfiable covering, possibly
over a partial sample point). In our counterparts Algorithms 3 and 4, we instead always return a satisfiability-
invariant interval in the dimension of the caller, which provides for a common interface for both existentially
and universally quantified variables. In particular, we move the computation of the characterization from
the caller to the callee.

This change introduces a technical problem for the first dimension (i = 1), as we refer to si−1 in the argu-
ments to interval_from_characterization which does not exist. This is to be expected, as the returned
interval would live in the “zero-th dimension”. To simplify the presentation, we assume that a special place-

3

Algorithm 4: forall(s)
Data: Global prefix Q1x1 · · ·Qnxn and matrix φ.
Input : Sample point s = (s1, . . . , si−1) ∈ Ri−1 such that φ[s] ̸= False.
Output: see Algorithm 2

1 Isat := ∅
2 while

⋃
I∈Isat

I ̸= R do
3 si := sample_outside(Isat)
4 if φ[s× si] = False then
5 (f,O) := (UNSAT, get_enclosing_interval(s, si)) // Algorithm 5
6 else if φ[s× si] = True then
7 (f,O) := (SAT, get_enclosing_interval(s, si)) // Algorithm 5
8 else it holds i < n
9 (f,O) := recurse(s× si) // Algorithm 2, recursive call

10 if f = SAT then
11 Isat := Isat ∪ {O}
12 else if f = UNSAT then
13 R := characterize_interval(s, O) // Algorithm 6
14 I := interval_from_characterization((s1, . . . , si−2), si−1, R) // [1, Algorithm 5]
15 return (UNSAT, I)

16 R := characterize_covering(s, Isat) // Algorithm 7
17 I := interval_from_characterization((s1, . . . , si−2), si−1, R) // [1, Algorithm 5]
18 return (SAT, I)

Algorithm 5: get_enclosing_interval(s, si)
Data: Global matrix φ.
Input : Sample point s ∈ Ri−1 and si ∈ R such that φ[s× si] ∈ {False, True}.
Output: A satisfiability-invariant algebraic interval I around si over s.

1 P := implicant_polynomials(φ, s× si)
2 Perform standard CAD simplifications to P
3 I := interval_from_characterization(s, si, P) // [1, Algorithm 5]
4 return I

holder value is returned instead of an actual interval. In particular, Algorithm 2 only returns SAT or UNSAT
and no longer exposes a model or an unsatisfiable covering. In an actual implementation, this information is
of course easily available.

Algorithm 1 is the interface to the recursive Algorithm 2, calling it with an empty sample point and
extracting the main return value. Algorithm 2 checks the current quantifier and calls out to Algorithm 3 or
Algorithm 4 accordingly.

Algorithm 3 is mostly equivalent to [1, Algorithm 2] and incorporates the following changes: instead of
returning a model, we obtain a feasible interval around the model and return the algebraic interval that can
directly be used for a satisfiable covering in dimension i− 1; instead of computing an algebraic interval from
the covering obtained from the (UNSAT) recursive call, we use the result as it is and return the appropriate
algebraic interval instead of a covering.

Algorithm 4 is analogous to Algorithm 3 that is used if the current variable is universally quantified.
The two procedures are almost identical: while Algorithm 3 collects unsatisfiable intervals and returns early
when it finds a satisfiable interval, Algorithm 4 collects satisfiable intervals and returns early when it finds an
unsatisfiable interval. Note that we call out to characterize_covering for both satisfiable and unsatisfiable
coverings in the very same way.

Algorithm 5 computes an interval around the given sample point that is satisfiability-invariant with re-
spect to φ. It first obtains the set of relevant polynomials by calling implicant_polynomials and then uses [1,

4

Algorithm 6: characterize_interval(s, I)

Input : Sample point s ∈ Ri and a single interval I over s in dimension i+ 1.
Output: Polynomials R ⊆ Q[x1, . . . , xi] characterizing a satisfiability-invariant region around s.

1 Extract ℓ = Iℓ, u = Iu, L = IL, U = IU , Pi+1 = IPi+1 , P⊥ = IP⊥

2 R := P⊥ ∪ disc(Pi+1) ∪ {required_coefficients(p) | p ∈ Pi+1}
3 R := R ∪ {res(p, q) | p ∈ L, q ∈ Pi+1, q(s× α) = 0 for some α ≤ l}
4 R := R ∪ {res(p, q) | p ∈ U, q ∈ Pi+1, q(s× α) = 0 for some α ≥ u}
5 Perform standard CAD simplifications to R
6 return R

Algorithm 7: characterize_covering(s, I)
Input : Sample point s ∈ Ri and a covering of algebraic intervals I over s in dimension i+1.
Output: Polynomials R ⊆ Q[x1, . . . , xi] characterizing a satisfiability-invariant region around s.

1 I := compute_cover(I) // [1, Section 4.4.1]
2 R :=

⋃
I∈I characterize_interval(s, I) // Algorithm 6

3 for j ∈ {1, . . . , |I| − 1} do
4 R := R ∪ {res(p, q) | p ∈ Uj , q ∈ Lj+1}
5 Perform standard CAD simplifications to R
6 return R

Algorithm 5] to construct the interval that is being returned. The helper function implicant_polynomials
is expected to return the polynomials of an implicant of φ with respect to s × si. This might include poly-
nomials with main variable xi or lower, effectively providing for a proper characterization of the interval not
only in variable xi, but also for lower variables. Further, if φ[s× si] = False and φ is a simple conjunction,
it is easy to obtain a prime implicant as the negation of a single conflicting constraint in constraints(φ).
Calling it in a loop as done in Algorithm 3 is thus a direct generalization of get_unsat_intervals from [1].
If φ[s× si] = True and φ is a simple conjunction, then φ itself is the only prime implicant.

Algorithm 6 and Algorithm 7 replace [1, Algorithm 4] and compute the characterizations for a single
interval and a covering, respectively. They contain no changes, except generalizing their input and output
descriptions to any coverings, either satisfiable or unsatisfiable.

3.1 Example

As wide parts of the algorithm are taken from the cylindrical algebraic covering method, we again refer
to [1] for more intuition of unsatisfiable coverings. In this example, we illustrate how both satisfiable and
unsatisfiable regions are characterized for an existentially quantified variable and how coverings of satisfying
regions are computed for a universally quantified variable. We consider the following formula with constraints
c1, c2 and c3 that are depicted in Figure 1a:

φ := ∀x1. ∃x2. c1 : x2 > 3.5− 2(x1 − 4)2 ∧ c2 : (x1 − 2)2 + (x2 − 2)2 − 1 > 0 ∧ c3 : x2 < 3 + 0.25(x1 − 4)2

forall(s = ()) We start covering the real line with satisfiable intervals by sampling values for x1:
exists(s = (2)) We start covering the real line with unsatisfiable intervals. We sample x2 = 3.5 and

find a satisfying sample. Now, we generalize to the feasible interval around (2, 3.5) as depicted in
Figure 1b, which is bounded from below by c1 and from above by c3. Its projection is the satisfiable
interval (1, 3) for x1 that we return.

exists(s = (3.2)) We sample x2 = 2.75 and find a satisfying sample. We generalize to the feasible
interval bounded by c1 and c3. Note that in the projection of the feasible interval, we take all
constraints into account (as all constraints are part of the implicant), even if they do not have a real

5

1 2 3 4 5 6

1

2

3

4

c1

c2

c3

x

y

(a) Graphs of the constraints. The gray areas depict
the conflicting regions of the constraints.

1 2 3 4 5 6

1

2

3

4

x

y

(b) The satisfiable intervals are indicated with a solid
line, the unsatisfiable intervals with a dashed line.

Fig. 1: Illustration of the example.

Algorithm 8: user_call_qe()
Data: Global prefix Qk+1xk+1 · · ·Qnxn and matrix φ.
Output: A disjunction of satisfiable regions of Qk+1xk+1 · · ·Qnxn.φ.

1 if k = 0 then return recurse(()) // Algorithm 2
2 else return parameter(()) // Algorithm 9

root at x = 3.2 – here, the discriminant of c2 is added to the projection ensuring that no root of
c2 crosses the feasible interval. The resulting projection is the satisfiable interval (3, 3.5) for x. (The
underlined value is an approximation).

exists(s = (4)) We sample twice, once x2 = 4 to obtain the unsatisfiable interval (3,∞) and once x2 = 2
to obtain the unsatisfiable interval (−∞, 3.5), as depicted dashed in Figure 1b. The intervals cover
the real line for x2 and we return the unsatisfiable interval (3.5, 4.5) for x1 which is the projection
of the generalization of the covering.

As a recursive call returned an unsatisfiable interval, the algorithm terminates here by returning UNSAT.

4 Quantifier Elimination

For extending the method for quantifier elimination, we could follow a NuCAD [5] like approach: we could
“guess” a sample point for all parameters at once, check the satisfiability of the formula using the method
above and construct a cell around the sample point. We would iterate this by guessing sample points outside
the already constructed cells until no such sample points exist. Finally, we would obtain a list of cells which
are either satisfying or unsatisfying.

We propose an alternative approach in Algorithms 8 and 9 which builds upon the cylindrical algebraic
coverings method. The idea is to consider the parameters first, and treating them similar to existentially
quantified variables with a few differences: instead of returning as soon as we find a satisfiable interval, we
collect both satisfiable and unsatisfiable intervals until the whole real line is covered by either satisfiable or
unsatisfiable intervals and return a characterization of this covering. This ensures that all satisfiable regions
of the parameter space are enumerated. Simultaneously, a symbolic description of the satisfiable regions in
the parameters is constructed as a formula and returned.

For the latter, we employ the concept of indexed root expressions [4]: an indexed root expression is a
function root[p, j] : Ri → R∪{undefined} where p ∈ R[x1, . . . , xi+1] and j ∈ N>0; for all r ∈ Ri, root[p, j](r)

6

Algorithm 9: parameter(s)
Data: Global prefix Qk+1xk+1 · · ·Qnxn and matrix φ.
Input : Sample point s = (s1, . . . , si−1) ∈ Ri−1 such that φ[s] ̸= False.
Output: (ψ, I) where ψ characterizes all satisfying regions over s within s× I.

1 I = ∅
2 ψ := False
3 while

⋃
I∈I I ̸= R do

4 si := sample_outside(I)
5 if φ[s× si] = False then
6 (T,O) := (False, get_enclosing_interval(s, si)) // Algorithm 5
7 else if φ[s× si] = True then
8 (T,O) := (True, get_enclosing_interval(s, si)) // Algorithm 5
9 else if i < k then

10 (T,O) := parameter(s× si) // recursive call
11 else it holds k ≤ i < n
12 (f,O) := recurse(s× si) // Algorithm 2, recursive call
13 if f = SAT then T := True
14 else T := False

15 I := I ∪ {O}
16 ψ := ψ ∨ (indexed_root_formula(O) ∧ T)
17 R := characterize_covering(s, I) // Algorithm 7
18 I := interval_from_characterization((s1, . . . , si−2), si−1, R) // [1, Algorithm 5]
19 return (ψ, I)

is the j-th real root of the univariate polynomial p(r, xi+1) ∈ R[xi+1] (or undefined if this root does not
exist). We use constraints over indexed root expressions to describe intervals symbolically: for an algebraic
interval I in main variable xi, we define the formula indexed_root_formula(I) =

∧
p∈IL

root[p, jp,ℓ] <
xi ∧ xi <

∧
p∈IU

root[p, jp,u] where jp,ℓ and jp,u are chosen such that root[p, jp,ℓ](s1, . . . , si−1) = Iℓ and
root[p, jp,u](s1, . . . , si−1) = Iu, respectively.

While indexed root expressions are an extension to regular nonlinear real arithmetic, equivalent “pure”
nonlinear real arithmetic formulas can be constructed with reasonable effort [4].

5 Conclusion

We have proposed an extension of the cylindrical algebraic coverings approach that is suitable to solve
the validity problem for quantified formulas as well as quantifier elimination queries for partially quantified
formulas. This significantly extends the applicability of the cylindrical algebraic coverings method to problems
that were reserved to regular cylindrical algebraic decomposition so far. At the same time it is backwards
compatible in the sense that it can produce the same results as the original method from [1], given that
appropriate heuristics are used.

We look forward to see how implementations of this approach fare in practice compared to the techniques
for these problems that are in use today. Given the pleasant practical experience with cylindrical algebraic
coverings in solving regular satisfiability modulo theories queries – one of the reasons cvc5 won on the
QF_NRA logic in the SMT-COMP 2021 over alternative approaches – we are optimistic it can bring significant
improvements, all while still allowing for a fairly easy implementation.

References

1. Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consistency of non-linear real arithmetic
constraints with a conflict driven search using cylindrical algebraic coverings. Journal of Logical and Algebraic
Methods in Programming 119(100633) (2021). https://doi.org/10.1016/j.jlamp.2020.100633

7

https://doi.org/10.1016/j.jlamp.2020.100633
https://doi.org/10.1016/j.jlamp.2020.100633

2. Abrahám, E., Davenport, J.H., England, M., Kremer, G.: Proving unsat in smt: The case of quantifier free non-
linear real arithmetic. arXiv preprint arXiv:2108.05320 (2021)

3. Ábrahám, E., Davenport, J.H., England, M., Kremer, G., Tonks, Z.: New opportunities for the formal proof of
computational real geometry? In: Practical Aspects of Automated Reasoning and Satisfiability Checking and
Symbolic Computation Workshop. CEUR Workshop Proceedings, vol. 2752, pp. 178–188. CEUR-WS.org (2020),
http://ceur-ws.org/Vol-2752/paper13.pdf

4. Brown, C.W.: Solution formula construction for truth invariant CAD’s. Ph.D. thesis (1999)
5. Brown, C.W.: Open non-uniform cylindrical algebraic decompositions. In: International Symposium on Symbolic

and Algebraic Computation. pp. 85–92 (2015). https://doi.org/10.1145/2755996.2756654
6. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Barkhage, H.

(ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer (1975). https://doi.org/
10.1007/3-540-07407-4_17

7. Kremer, G., Ábrahám, E., England, M., Davenport, J.H.: On the implementation of cylindrical algebraic coverings
for satisfiability modulo theories solving. In: Symbolic and Numeric Algorithms for Scientific Computing (2021).
https://doi.org/10.1109/SYNASC54541.2021.00018

8

http://ceur-ws.org/Vol-2752/paper13.pdf
https://doi.org/10.1145/2755996.2756654
https://doi.org/10.1145/2755996.2756654
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1109/SYNASC54541.2021.00018
https://doi.org/10.1109/SYNASC54541.2021.00018

	Cylindrical Algebraic Coverings for Quantifiers

